

Kazuki Okuyama

for the JLab Hypernuclear Collaboration

Graduate School of Science, Tohoku University, Japan Graduate Program on Physics for the Universe (GP-PU), Tohoku University, Japan

GPP

<u>JLab: E12-17-003 (2018) \rightarrow p(e,e'K+)/ Λ reaction (gas H₂ target)</u> based on HYP Proceedings: K. Okuyama *et al.*, EPJ Web Conf., **271** (2022) 02003 <u>https://doi.org/10.1051/epjconf/202227102003</u>

Motivation & Experiment

> Data Analysis: $p(e,e'K^+)\Lambda/\Sigma^0$ reaction

Results & Summary

<u>JLab: E12-17-003 (2018) \rightarrow p(e,e'K+) Λ/Σ^0 reaction (gas H₂ target)</u> based on HYP Proceedings: K. Okuyama *et al.*, EPJ Web Conf., **271** (2022) 02003 <u>https://doi.org/10.1051/epjconf/202227102003</u>

Motivation & Experiment

> Data Analysis: $p(e,e'K^+)\Lambda/\Sigma^0$ reaction

Results & Summary

Motivation: Hyperon Electroproduction e

Hyperon electroproduction /e as an <u>elementary process</u> of Hypernucleus electroproduction

Experimentally;

Cross section is necessary because of ... yield estimation, realistic energy spectrum

- based on photoproduction: γ (real) $\rightarrow \gamma^*$ (virtual, Q²=0.5 (GeV/c)²)
- abundant data <u>except</u> forward angles \Leftrightarrow our Exp. ($\theta_{\gamma K}$ <10)

Theoretically;

Isobaric model and RPR model were well established

- based on Exp. data (Photo-: ~3500 data >> Electro-: ~200 data)
- Missing resonance may couple to KA, K Σ channels

Accumulating the hyperon electroproduction data is necessary!

Kazuki Okuyama

Kazuki Okuyama

Hyperon **Electroproduction** at JLab

Kazuki Okuyama

Kazuki Okuyama

<u>JLab: E12-17-003 (2018) \rightarrow p(e,e'K+)/ Λ reaction (gas H₂ target)</u> based on HYP Proceedings: K. Okuyama *et al.*, EPJ Web Conf., **271** (2022) 02003 <u>https://doi.org/10.1051/epjconf/202227102003</u>

Motivation & Experiment

> Data Analysis: $p(e,e'K^+)\Lambda/\Sigma^0$ reaction

Results & Summary

Analysis flow

Hydrogen Data

- H₂ gas region selection (Vertex Position)
- Kaon identification: Part1 (Aerogel Cherenkov)
- Kaon identification: Part2 (Coincidence Time)

<u>Event selection:</u> p(e,e'K⁺)Λ/Σ⁰ reaction

Efficiency

 Λ/Σ^0 Missing Mass Spectrum

Acceptance

The Differential Cross Sections (D.C.S.)

D.C.S. derivation of the hyperon electroproduction

Kazuki Okuyama

Z-vertex (Target selection)

Kazuki Okuyama

Kazuki Okuyama

JLab Hyp. Collab. Mtg (Dec. 14, 2022)

Coincidence Time (Kaon identification)

Kazuki Okuyama

Missing Mass Spectrum

Estimation of Radiative Tail

Data Fitting (Landau+Exp) * Gaus

Monte Carlo Simulation

Kazuki Okuyama

Analysis flow

Hydrogen Data

- H₂ gas region selection (Vertex Position)
- Kaon identification: Part1 (Aerogel Cherenkov)
- Kaon identification: Part2 (Coincidence Time)

Derivation of the differential cross section

Kazuki Okuyama

<u>JLab: E12-17-003 (2018) → p(e,e'K+)Λ/Σ⁰ reaction (gas H₂ target)</u> based on HYP Proceedings: K. Okuyama *et al.*, EPJ Web Conf., **271** (2022) 02003 <u>https://doi.org/10.1051/epjconf/202227102003</u>

Motivation & Experiment

> Data Analysis: $p(e,e'K^+)\Lambda/\Sigma^0$ reaction

Results & Summary

Results

Kinematics (E12-17-003): W=2.14 GeV, Q²=0.5 (GeV/*c*)², $\theta_{\nu K}^{c.m.}$ =8 deg

$$\Lambda \qquad \overline{\left(\frac{\mathrm{d}\sigma_{\gamma^*p\to K^+\Lambda}}{\mathrm{d}\Omega_{K^+}^{\mathrm{c.m.}}}\right)} = 0.426 \pm 0.022(\mathrm{Stat.})^{+0.021}_{-0.040}(\mathrm{Syst.}) \ [\mu\mathrm{b/sr}]$$
$$\Sigma^{0} \qquad \overline{\left(\frac{\mathrm{d}\sigma_{\gamma^*p\to K^+\Sigma^0}}{\mathrm{d}\Omega_{K^+}^{\mathrm{c.m.}}}\right)} = 0.080 \pm 0.005(\mathrm{Stat.})^{+0.038}_{-0.017}(\mathrm{Syst.}) \ [\mu\mathrm{b/sr}]$$

➢ Result1: Q² dependence

Result2: Angle dependence

Result1: Q² dependence

> We deduced the differential cross sections at Q²~0.5 (GeV/*c*)². > d σ /d Ω (Λ and Σ^{0}) tend to increase as Q² decrease, and so do our results.

Kazuki Okuyama

Result2: Angle dependence

> Comparison with photoproduction (Q²=0) — well known except for forward angles

 $\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}\omega\mathrm{d}\Omega_{\mathrm{e}^{\prime}}\mathrm{d}\Omega_{\mathrm{K}}^{\mathrm{c.m.}}} = \Gamma \frac{\mathrm{d}\sigma_{\gamma^{*}}}{\mathrm{d}\Omega_{\mathrm{K}}^{\mathrm{c.m.}}}$

Note1: Plotted with photoproduction w/o corr. Note2: Our data is $Q^2=0.5$ (GeV/*c*)²

Kazuki Okuyama

Summary & Conclusion

→ JLab: E12-17-003 experiment in 2018 (W=2.14 GeV, Q²=0.5 (GeV/*c*)², $\theta_{\gamma K}^{c.m.}$ =8 deg) → Forward angles data which is scarce in photoproduction

> We deduced the differential cross section of the Λ/Σ^0 electroproduction;

$$\left(\frac{\mathrm{d}\sigma_{\gamma^*p\to K^+\Lambda}}{\mathrm{d}\Omega_{K^+}^{\mathrm{c.m.}}}\right) = 0.426 \pm 0.022(\mathrm{Stat.})^{+0.021}_{-0.040}(\mathrm{Syst.}) \ [\mu\mathrm{b/sr}]$$

$$\left(\frac{\mathrm{d}\sigma_{\gamma^*p\to K^+\Sigma^0}}{\mathrm{d}\Omega_{K^+}^{\mathrm{c.m.}}}\right) = 0.080 \pm 0.005(\mathrm{Stat.})^{+0.038}_{-0.017}(\mathrm{Syst.}) \ [\mu\mathrm{b/sr}]$$

- We obtained the differential cross section of the hyperon electroproduction in the low-Q² region. I hope this work help understanding hyperon photo- and electroproduction in the same framework.
- ➤ I am going to write Ph.D Thesis with this topic. (~ March, 2024)