JLab hypernuclear collaboration meeting 2022

Status of PCS & MC simulation study

Tohoku University

Sho Nagao

2022/07/22

Contents

PCS & Experimental Setup
➢ Requirements for the experiments
➢ Status of PCS magnets
➢ Possible setups

Monte Carlo Simulation Study
➢ Expected resolution, acceptance
➢ Rate, Yield estimation

Requirements

>e' spectrometer with p ~ 0.8 GeV/c & Δp/p ~ several×10⁻⁴ (FWHM)
>K⁺ spectrometer with p ~ 1.2 GeV/c & Δp/p ~ a few×10⁻⁴ (FWHM)
>e⁻ beam & brems γ to the beam dump.
>Septum magnets to cover the forward angle
>Z vertex reconstruction (σ < a few cm)

Particle Charge Separator (PCS)

		PCS(K)	PCS(e)
Weight		7.8 t	8.0 t
Max. Field		1.3 T	
Main Coil	Geometry	16×16 / Ф10	
	Turns	96 / coil	
	Current	1700 A	
	Voltage	106 V _{/ each mag.}	
	Δt	20°C	
Corr. Coil	Geometry	14×9 / 10×5	
	Turns	88 / coil	
	Current	1000 A	
	Voltage	97 V _{/ eac}	ch mag.
	Δt	11°C	

Sieve slit will be prepared just before the PCS entrance. Base design is necessary. 2000A / 200V PW (SBS power) is necessary.

PCS is now in ESB

PCS transported from JAN to USA.

> Construction

Japan

- ➢ Sendai → Pt. Yokohama
- Departure on 29 Dec. 2021

> Pt. Norfolk → JLab (11 Feb.)

USA

- Storing in ESB
- Un-packing

Experimental Setup A (Vertical HES, the first candidate)

Experimental Setup B (Vertical HKS)

Characteristics

- Forward HES + HKS with PCSs
- ➢ Good (~ 0.6 MeV) Mass resolution
- ➢ Miss-Matching bet. PCS(e') and HES
- ➢ Interference with HKS Q1 Mag.
- ➢ New support frame for HKS is needed
- High cost

Experimental Setup C [PCS + SHMS + HKS (holi. or vert.)]

Characteristics

- ➢ Forward SHMS & PCS(K) + HKS
- Low mom. setting (0.8 GeV/c) of SHMS
- Vacuum extension (Target SHMS)
- > ~ 1 MeV Mass resolution
- Low cost

Simulation results (Resolution)

Optical Monte-Carlo simulation on Geant4.

	HES(V) + HKS	HES + HKS(V)	SHMS + HKS
Δp/p (e') [FWHM]	5.9 (6.6)×10 ⁻⁴	4.3	10
Δp/p (K+) [FWHM]	2.7×10 ⁻⁴	4.0 (6.3)	2.7
σ _z [cm]	0.7	0.8	
ΔM [MeV/c ²]	0.54 (0.58)	0.55 (0.78)	0.79

Note1: Results for the gaseous targets in parenthesis. Note2: Detector resolution ON, Energy struggling OFF

- > Z vertex could be reconstructed by vertical bending HES or HKS.
- Optics of the vertical HES and HKS is not optimal. Best performance cannot be expected.
- These spectrometers could have enough resolution for the hypernuclear spectroscopy.

Simulation Results (Acceptance)

by K. Okuyama (shown in the last collaboration meeting)

p.10/17

Yield & S/N

Target	e' Arm Rate	Hadron Arm Rate	Hyper Yield	S/N ratio
¹² C	130 kHz	20 kHz	56 cnts / day	7
⁴⁰ Ca	400 kHz	15 kHz	9 cnts / day	0.4
²⁰⁸ Pb	1,000 kHz	10 kHz	3 cnts / day	0.05

Note1: Current = $20 \mu A$, Thickness = 100 mg/cm^2

Note2: Rate and Yield would be proportional to the current and the thickness.

Note3: S/N would be in inverse proportional to the current and the thickness.

Note4: S/N was 2 for ¹²C, 0.25 for ⁷Li, 0.08 for ⁵²Cr targets in E05-115

Detector rates of e' & hadron arm would be more relax (1/4 ~ 1/5) than those in E05-115 because of the larger e' angles and the less e⁺ contamination in the hadron arm.

> Detectors would survive even for 20 μ A & Lead target, though the S/N ratio would be low.

Yield and Peak Significance

 ${}^{40}{}_{\Lambda}$ K (Ca target)

- > 200 cnts of $_{\Lambda}$ K could be detected in 3 weeks at 20 μ A (1.5 weeks at 40 μ A).
- ▶ Peak significances (S/ $\sqrt{(S+N)}$) are not so different between the 20- and 40-uA beam currents.
- > 3~4 weeks beam time for both ^{40 & 48}Ca targets (doubled the original beam time) is necessary getting >5σ significance.

Summary

PCS

- > Magnets were successfully transported to JLab ESB on Feb. 2022.
- Waiting for installation
- > Preparation of PCS base, Sieve collimator and Power Supply (SBS power?) are necessary.

Setup Plans

- PCS + HES(vertical) + HKS may be the first candidate.
- > vertical HKS is better compared to vertical HES in terms of physics output
- Technical and Mechanical supports are very important to consider the possibility of vertical bending HES (or/and HKS).
- Lower beam current (20 uA)
 - \rightarrow Doubled beam time would be necessary to achieve the enough peak significance.

Backup

Photos

B - I Curve

Magnetic Field v.s Main coil current

Field strength along the track

Field Leakage

- Field leakage is suppressed with correction coils.
- Magnetic shielding of the beam pipe and correction magnet is necessary.
- Integral B·dl along the beamline will be 0.2 (T·m) w/o shield and 0.034 (T·m) w/ shield

Field Leakage

- Field leakage is suppressed with correction coils.
- Magnetic shielding of the beam pipe and correction magnet is necessary.
- Integral B·dl along the beamline will be 0.2 (T·m) w/o shield and 0.034 (T·m) w/ shield

PCS (K)

O: PCS SM1(K)原点、Pole中点 X = 0, Y = 0, Z = 0
P: PCS SM1(K)出口、Pole中点 X = -103.4, Y = 0, Z = 793.8
A: 入口フランジ中心 X = 0, Y = 0, Z = -165, Φ₁ = 153, Φ₂ = 225
B: 真空箱入口中央 X = 7.1 (±90.5555), Y = 0 (±31.38), Z = -106
C: 真空箱出口中央 X = -123.8 (±99.5), Y = 0 (±84), Z = 897.7
D: 出口フランジ中心

 $X = -178.3, Y = 0, Z = 1084.2, \Phi_1 = 318.5, \Phi_2 = 40000$

O: PCS SM1(K)原点、Pole中点 X = 0, Y = 0, Z = 0
P: PCS SM1(K)出口、Pole中点 X = 44.88, Y = 0, Z =
A: 入口フランジ中心 X = 0, Y = 0, Z = , Φ₁ = , Φ₂ =
B: 真空箱入口中央 X = , Y = , Z =
C: 真空箱出口中央 X = , Y = , Z =
D: 出口フランジ中心 X = , Y = 0, Z = , Φ₁ = , Φ₂ =

Estimator

