2021/12/10 秋保温泉

EOS softening by hyperon mixing Neutron Star and Hyperon Puzzle What is Hyperon Puzzle ? How related to hypernuclear experiments ? Y. Yamamoto

Recent information on neutron-star radii arXiv:2105.06981 14 May 2021 11.52 km < R(1.4Msun) < 13.09 km (PP model) 11.39 km < R(1.4Msun) < 12.74 km (CS model) arXiv::2105.08688 18 May 2021 11.07 km < R(1.4Msun) < 12.70 km 11~13 km based on NICER

Hyperon-2M_{sun} puzzle !

 $\begin{array}{c} Massive \ (2M_{\odot}) \ neutron \ stars \\ 2010 \ \ PSR \ J1614-2230 \ \ (1.97\pm0.04) \ M_{\odot} \\ 2013 \ \ PSR \ J0348-0432 \ \ (2.01\pm0.04) \ M_{\odot} \end{array}$

Softening of EOS by hyperon mixing

Dropping of pressure by changing of high-momentum neutrons to low-momentum exotic particles (hyperons, Δ , k-mesons, quarks) free from Pauli principle

Hadron-phase level

before observation of $2\ensuremath{M_{\text{sun}}}$

Our approach to universal TBR From experimental data !

Many-body repulsive effect in high density region (up to $2\rho_0$) owing to Frozen-Density approximation

Nucleus-Nucleus scattering data with G-matrix folding potential

<u>T. Furumoto</u>, Y. Sakuragi and Y. Yamamoto, (Phys. Rev. C79 (2009) 011601(R)) <u>T. Furumoto</u>, Y. Sakuragi and Y. Yamamoto, (Phys. Rev. C.80 (2009) 044614)

A model of Universal Many-Body Repulsion Multi-Pomeron Exchange Potential (MPP) Same repulsions in all baryonic channels NNN, NNY, NYY, YYY

Ratio of 3- and 4-body repulsions cannot be determined !!!

determined independently

Solutions of the hyperon- $2M_{sun}$ puzzle ?

Burgio, Schulze, Vidana : arXiv:2105.03747. 2021

Three possible solutions (並列的に羅列しただけ): (1) Hyperon-hyperon repulsion (2) Hyperonic three-body forces (3) Quarks in neutron stars

(2)に関して:
 "Hyperonic TBFs are not the full solution of the hyperon puzzle"
 (Yamamoto, Vidana, Lonardoni, の結果がマチマチである故)
 2M_{sun} 1.6M_{sun} not conclusive

(3)に関して:

"Whether quarks can provide sufficient repulsion to support $2M_{sun}$ NS" (色々な論文の紹介をしてるだけ)

いささか浅薄な認識ではある

Bombaki; Nuclear Physics News, Vol.31/No.3

"It is reasonable to expect that YTBIs can influence dense-matter EOS and represent a likely candidate to solve the hyperon puzzle"

Logotera, Vidana, Bombaki Eur.Phys.J. A55(2019) 207

 $\{n,p,\Lambda,e,\mu\}$ with NNA TBI

Σ-が混じると話が違うヨ!

"If YTBIs were repulsive enough, hyperon would never appear at the densities encountered in NS cores"

これは重要な観点であろう!

"We mention a way to <u>circumvent</u> the hyperon puzzle, allowing the presence of strangeness in NSs in the form of strange quark matter"

いささかプラグマティズム!

Remaining problems to solve quantitatively the hyperon-2M_{sun} puzzle in hadron level

* Presence or Absence of ∑⁻ mixing ∑N scattering experiment で決められるか??

Can be solved the puzzle- $2M_{sun}$ in quark phase?

High-momentum neutrons→low-momentum particles (no Pauli) Lowering of pressure → softening of EOS

Dropping of pressure by exotic particles (hyperons, Δ , mesons, quarks) free from Pauli principle

If there is no repulsive effect in quark phase Softening of Q-EOS

Hadron-Quark transition model Quark-matter EOS (Q-EOS)

Baryon phase by BB interaction Quark phase by QQ interaction represented in the same framework (BHF) Phase transitions between them

Realistic QQ interaction based on terrestrial data

V_{EME} : extended meson-exchange interaction

ESC-QQ interaction with QQM-coupling $m_Q=M_B/3$ folding unfolding

ESC-BB interaction with BBM-coupling ESC model

Relations between QQM- and BBM-couplings are determined by the condition that BBM vertex is obtained by folding of QQM vertex with SU(6) quark model

Averaged potential energy

Roles of MPP in QQQ and BBB levels

In order to reproduce maximum mass over $2M_{\rm sun}$ MPP_{\rm hyp}(hadron level) is unnecessary (given by Q-EOS)

Origin of QQ repulsion is related to origin of BB repulsion (our model)

- * vector-meson & pomeron exchange
- * one-gluon exchange (a_s=0.25) (両者には"double counting"がある。例えば藤原QQ potentialでは OGE(a_s≒2)に対してvector-meson coupling is zero or small)

MPP repulsion is minor in QQ level (because of $g_{PQQ} = g_{BQQ}/3$)

MPP(QQQ) is folded into MPP(BBB) Bond number of folding into BBB is larger than that into BB MPP repulsion becomes strong in BB level, controlling H-EOS

Density dependent effective QQ interactions based on G-matrix calculations for quark matter

$$\mathcal{G}_{EME,OGE}(\rho,r) = (a\rho^p + b\rho^q) \cdot \exp(-(r/0.8)^2) + c \cdot \exp(-(r/1.6)^2) ,$$
$$\mathcal{G}_{INS}(\rho,r) = (a\rho^p + b\rho^q) \cdot \exp(-(r/0.6)^2)$$
$$(a,p,b,q,c) \rightarrow \text{given for each } (qq',T,S,P)$$

It is very easy to calculate Q-EOS by using effective QQ interaction up to high densities

Effective Quark Mass

Constituent quark mass (from chiral symmetry breaking) is larger than (similar to) current quark mass in vacuum (in high-density quark matter)

Density dependent quark mass

phenomenological Density-dependent quark mass **Controlling phase transitions** $M_Q^*(\rho_Q) = M_Q / [1 + \exp\{\gamma(\rho_Q - \rho_c\}] + m_0 + C$ $C = M_Q - M_Q / [1 + \exp(-\gamma \rho_c)]$ $M_Q^*(0) = M_Q$ $B(\rho_Q) = M_Q^*(0) - M_Q^*(\rho_Q)$ Quark mass $M^{*}(\rho_{\alpha})$, $M_{\alpha}(0)=305$, $\rho_{0}=0.17$ [fm]⁻³ 350 vacuum energy 300 $\rho_{c}=6\rho_{0}$ fixed 250 200 γ is taken so that phase transitions 150 occur at $(2-3) \rho_0$ 00 100 B-R Sets of QQ interactions 50 0 Pg/Po $Q0: V_{EME}$ with $\gamma = 1.2$ Q1: $V_{EME} + V_{INS} + V_{OGE}$ with $\gamma = 1.0$

Q2: $V_{EME} + V_{MPP} + V_{INS} + V_{OGE}$ with $\gamma = 1.4$

BB interactions

- H1 : ESC+MPb
- H2: ESC+MPa
- $H3: ESC+MPa^+$

with relativistic kinetic energy

f quark potential in quark matter composed of f^\prime quarks

$$U_f(k) = \sum_{f'} U_f^{(f')}(k) \qquad f, f' = u, d, s$$
$$= \sum_{f'} \sum_{k' < k_F^{f'}} \langle kk' | \mathcal{G}_{ff', ff'} | kk' \rangle$$

$$\varepsilon_{f} = 2N_{c} \sum_{f} \int_{0}^{k_{F}^{f}} \frac{d^{3}k}{(2\pi)^{3}} \left\{ \sqrt{\hbar^{2}k^{2} + M_{f}^{2}} + \frac{1}{2}U_{f}(k) \right\} + B(\rho_{Q})$$

$$\mu_f = \frac{\partial \varepsilon_Q}{\partial \rho_f} ,$$

$$P_Q = \rho_Q^2 \frac{\partial (\varepsilon_Q / \rho_Q)}{\partial \rho_Q} = \sum_f \mu_f \rho_f - \varepsilon_Q$$

EoS of β -stable quark matter composed of u, d, s, e^- . (1) chemical equilibrium conditions,

$$\mu_d = \mu_s = \mu_u + \mu_e$$

(2) charge neutrality,

$$0 = \frac{1}{3}(2\rho_u - \rho_d - \rho_s) - \rho_e$$

(3) baryon number conservation,

$$\rho_B = \frac{1}{3}(\rho_u + \rho_d + \rho_s) = \frac{1}{3}\rho_Q$$

EOS (pressure P as a function of energy density ε) Q-EOS is stiffer than H-EOS

Density-dependent quark mass

Replacement Interpolation Method Q-curves are connected smoothly from H-curves at crossing points simple treatment for the Gibbs construction

 M_{max} is determined by Q-EOS: Q1 & Q2 give reasonable values of M_{max} PSR J0740+6620 : Both of mass and radius are observed

arXiv:2105.06981 14 May 2021 11.52 km < R(1.4M_{sun}) < 13.09 km (PP model) 11.39 km < R(1.4M_{sun}) < 12.74 km (CS model) arXiv:2105.08688 18 May 2021 11.07 km < R(1.4M_{sun}) < 12.70 km

arXiv:2101.03193 ; taking into account of PREX-II 13.80 km <R(1.4Msun) <14.26 km

	M_{max}/M_{\odot}	$R_{M_{max}}$	$R_{1.4M_{\odot}}$	$\Lambda_{1.4M_{\odot}}$	
		(km)	(km)		
H1	1.82	10.4	12.4	422.	
H1+Q0	1.99	10.0	12.4	422.	
H1+Q1	2.16	10.4	12.4	422.	
H1+Q2	2.26	10.6	12.4	422.	
H1'	1.52	10.4	12.1	334.	w/o MPP
H1'+Q1	2.13	10.1	12.2	337.	n / C III I nyp
					1
H2	1.94	10.3	13.3	671.	
H2+Q0	2.02	10.5	13.3	671.	
H2+Q1	2.17	10.6	13.3	671.	
H2+Q2	2.26	10.8	13.3	671.	

In the case of H-EOS only, M_{max} depends on $R(1.4M_{sun})$ It is difficult to be over $2M_{sun}$ In the case of H-EOS+Q-EOS, M_{max} can be over $2M_{sun}$ independently of $R(1.4M_{sun})$ QQ repulsion in our approach

Repulsions in BB interaction (ω meson + pomeron in ESC)

Followed in QQ interaction

Q1: $V_{EME} + V_{INS} + V_{OGE}$ **Q1np:** V_{EME} (no pomeron) $+ V_{INS} + V_{OGE}$

QOnp : no pomeron-exchange

conclusion

In order to avoid EOS softening by mixing of exotic phase (hyperon, quark, etc) high-density repulsions are needed in respective phases

EOS softening in baryonic phase by hyperon mixing can be avoided by universal repulsion (MPP)

In our QQ interaction model, stiff Q-EOS can be realized mainly by exchange repulsions of vector-meson & pomeron related to the origin of BB repulsion.

By using H-EOS and Q-EOS for hybrid stars based on our QQ/BB interaction model, both observed values of $M_{\rm max}$ and $R\,(1.4M_{\rm sun})$ can be reproduced without ad hoc parameters

蛇足

実験でANN-TBRの強さを決める意義

In Isaka calculations:
* ESC14+MPP (needed for NS)
* ESC12+weak MPP
Small difference of Λ-nuclear spectra → MPPの上限を決める程度
でも意義あり!!
クォーク相まで考慮する時には、ΛNN-TBRの強さは
Hyperon-2M_{sun} puzzle を解くためと云うより
NSにおけるΛ-mixingのonset densityを
与えるものと位置付けられるのではないか

例えばLonardoniの非常に強いANN repulsionの 下ではA-mixingは(故にEOSソフト化も)起こらない

まずはそのような可能性を実験的に排除すことができれば、それだけでも非常に意味がある