Kinematic coverage of data for $R = \sigma_L/\sigma_T$ extraction

Tyler Kutz

January 17, 2019

Relevance of R

• R is the absorption cross section ratio for longitudinally to transversely polarized photons:

$$R = \sigma_L/\sigma_T$$

- Knowledge of R required to obtain F_2 from absolute cross section (typically obtained from SLAC parametrization, R1990)
- Cross section ratio only equal to F_2 ratio if R is independent of nucleus (often assumed based on SLAC and CERN measurements)

Sensitivity to ΔR

Difference in R between nucleus A and deuterium can be found from cross section ratios using a Rosenbluth separation style method:

$$\frac{\sigma_A}{\sigma_D} = \frac{\sigma_A^T}{\sigma_D^T} \left[1 + \frac{\epsilon}{1 + \epsilon R_D} (R_A - R_D) \right]$$

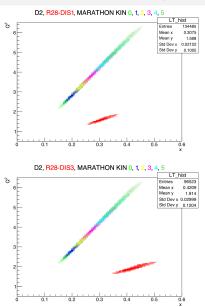
where

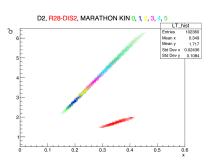
$$\epsilon = \left[1 + 2\left(1 + \frac{\nu^2}{Q^2}\right)\tan^2\frac{\theta}{2}\right]$$

For MARATHON:

- EMC measurements in tritium, helium-3 care about $R_T R_D$, $R_H R_D$
- F_2^n/F_2^p measurement cares about $R_T R_H$
 - Could be obtained directly if R data exists for helium-3

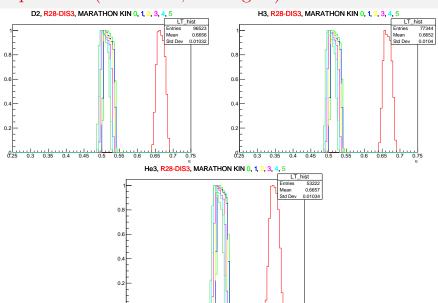
Overview of data


Spring 2018 data (MARATHON):


	$E_0 \text{ (GeV)}$	E' (GeV)	θ (°)
KIN 0	10.6	3.1	16.807
KIN 1	10.6	3.1	17.755
KIN 2	10.6	3.1	19.115
KIN 3	10.6	3.1	20.578
KIN 4	10.6	3.1	21.930
KIN 5	10.6	3.1	23.213

Fall 2018 data:

	$E_0 \text{ (GeV)}$	E' (GeV)	θ (°)
R28-DIS1	4.3	1.58	28.004
R28-DIS2	4.3	1.71	28.004
R28-DIS3	4.3	1.91	28.004


x vs. Q^2 coverage (deuterium)

- Good overlap in x_{Bj}
- No overlap in Q^2 ...evolve result with DGLAP equations
- DGLAP up or DGLAP down?

ϵ separation (R28-DIS3, all targets)

0.45 0.5 0.55 0.6 0.65

Issues

- $\Delta \epsilon \approx 0.15$ smaller than desired, but could still be useful
- Extract ratio in similar manner to MARATHON analysis, but bin in ϵ instead of x_{Bj}
- Concern: result could be very sensitive to small analysis changes due to short lever arm