
Github/Git Primer 

Tyler Hague 



Why Use Github? 

• Github keeps all of our code up to date in one 
place 

• Github tracks changes so we can see what is 
being worked on 

• Github has issue tracking for keeping up with 
what needs work 

• Github has collaborative tools for conflict 
prevention 



What workflow should we follow? 

• The master repository is our “official” code. This 
is where we keep working code and should not 
be used for any tests. 

• To work on the code, make a fork and work there. 

• For ‘tests’, create branches to avoid affecting your 
functional code. These can later be merged into 
the master code. 

• When the work you set out to do is complete, 
create a pull request to put it in the master 
repository. 



How do I do this?! 
https://github.com/JeffersonLab/HallA-Online-Tritium 

https://github.com/JeffersonLab/HallA-Online-Tritium
https://github.com/JeffersonLab/HallA-Online-Tritium
https://github.com/JeffersonLab/HallA-Online-Tritium
https://github.com/JeffersonLab/HallA-Online-Tritium
https://github.com/JeffersonLab/HallA-Online-Tritium


Download your fork 
Use the command: “git clone <YOUR_GIT_URL>” 



What do I do when I’ve made changes 
I want to keep? 

• Commit your work 
– “git add” – select the individual files that you would like to 

have included in the next commit (or use “--all”) 
– “git commit” optional flag “--all” 
– This will open a text editor to provide a commit message 

• First line should be a brief overall description of what you did 
• On the next line you can begin a detailed description of the work if 

necessary 

– This creates a local commit that you can reference and 
track 

• Use “git push” to move your local commits to your 
github fork 
– You will be prompted for your github login info 



I’m ready to move my code to the 
master repository. Now what? 



I’m ready to move my code to the 
master repository. Now what? 

Lower on the screen it will show the differences between the current code and your code 



I’m ready to move my code to the 
master repository. Now what? 

It will ask you for a pull request message. This should describe what your changes accomplish. 
This will then be sent off to the maintainer of the repository (Evan) for approval. 

*Note that I’m not actually 
making this pull request. As 
stated in the message, this 
work is not complete. Don’t 
put incomplete code in the 
main repository. 



If I’m working outside of the main 
repository, how do I keep my code up 

to date? 
• Must connect your local (downloaded) code to 

the upstream (master) repository. 

1. “git remote add upstream 
<URL_OF_MASTER_REPO>” 

2. “git fetch upstream” 

3. “git checkout master” 

4. “git merge upstream/master” 

5. “git commit –all” 

6. “git push” 



What if I want to work on a side-
project or test? 

• Create a branch! 
• A branch allows you to create a set of tracked changes separate 

from the master branch. The branches exist within your fork of the 
repository. 

• Relevant commands: 
– “git branch” – shows a list of branches available on your machine 
– “git branch <name_of_branch>” – creates a branch with the name 

specified 
– “git checkout <name_of_branch>” – begin working on code in the 

specified branch. “-b” flag will create the branch if it doesn’t exist. 

• If you decide that the branch is something that should be merged 
into the master branch: 
– “git checkout master” 
– “git merge <name_of_branch>” 



What if there are conflicts in the 
merge? 

• Your code will enter merge mode. 

• The merge failure message will tell you which 
files have conflicts. 

• When you edit these files, you will see extra 
lines indicating where the conflicts are. You 
must manually decide which code should be 
kept and which should be deleted. 

• After you do this, you can commit the changes 
and the conflict resolution is complete. 



Merge Mode Example 

Person1 and Person2 have been working independently on scaler code. 
Person1 decided to merge Person2’s code with theirs. This has led to a conflict. 

This message tells us which files have conflicts. In this case, we should look at 
“replay/replay_tritium.C” to fix what is happening. Then, the changes can be 
committed. 



Merge Mode Example 
When we look at “replay/replay_tritium.C” we see that both person1’s code and 
person2’s code is shown. Since we are in branch “person1” that is the “HEAD” branch. 
The conflicting code is shown after the “=======“. Person1 must now choose what 
code to keep and commit the changes. 

*Merge conflicts will happen when many people are working on the code. The comments here are 
not meant to imply that communication breakdown is the only cause of merge conflicts. However, 
when a conflict happens those who wrote the conflicting code should communicate in order to reach 
an agreeable solution. Don’t simply delete the other persons code without good reason. 



Merge Mode Example 

After the discussing the problem and a solution was found. Person1 made the 
completed the merge and committed them to their repository. 



When in doubt, ask an expert! 

• Sometimes that’s me. 

• A lot of times that’s Evan. 

• If we don’t know, we’ll do our best to help you 
figure it out so that we can all better use this 
tool. 



Questions? 

 


