

Tritium Experiment Readiness Review

charge items 6 and 7 Radiation Budget Estimate and Safety Document

Presented by Douglas Higinbotham

Hall A Safety Documentation

- Using Github to manage Hall A LaTeX Documentation: <u>https://github.com/JeffersonLab/halla-osp</u>
 - COO: Conduct of Operations
 - ESAD: Experimental Safety Assessment Document
 - Hall A Standard Equipment Documentation
- RSAD done in collaboration with Radcon
- ERG Emergency Response Guidelines
 - word document with map from facilities with labeled safety equipment
- OSP's by system owners

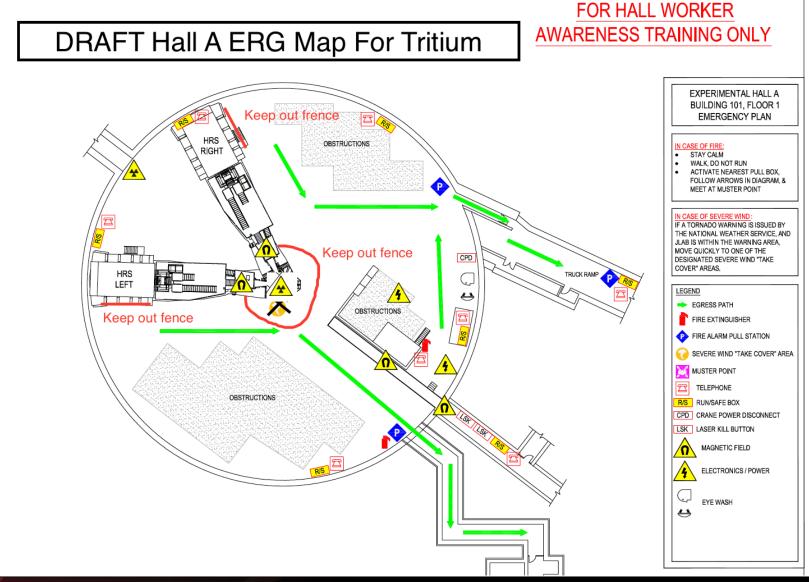
COO & ESAD

- Working forward from previously approved Hall A COO and ESAD documents (version control maintained with Github)
- Adding information about tritium and new training requirements COO & ESAD
- Adding information about students working in the Hall. This has been missing from experiment COO and added thanks to Ed Folts.

Radiation Budget Estimate

Energy Current	GeV		2.2 15.0	2.2 15.0	2.2 15.0	2.2 15.0	2.2 15.0		Energy Current	GeV		8.8 15.0	8.8 15.0	8.8 15.0	8.8 15.0	8.8 15.0	
Element		Be	IS.0 Be	IS.0 Be	IS.0 Be	IS.0 Be	13.0		Element		Be	15.0 Be	IS.0 Be	IS.0 Be	13.0 Be	13.0	
Thickness	mg/cm2	ве	ве 36.0	з6.0	ве 36.0	ве 36.0	36.0		Thickness	mg/cm2	ве	ве 36.0	ве 36.0	з6.0	ве 36.0	36.0	
Element	ing/citiz	AI	SU.U Al	30.0 Al	SO.U Al	50.0 C	30.0		Element	ing/citiz	AI	SU.U Al	SO.U Al	30.0 Al	50.0 C	50.0	
Thickness	mg/cm2	AI	160.0	160.0	160.0	160.0	100.0		Thickness	mg/cm2	AI	160.0	160.0	160.0	160.0	100.0	
Element	ing/citiz	н	100.0 D	100.0 T	3He	100.0	100.0		Element	ing/citiz	н	100.0 D	100.0 T	3He	100.0	100.0	
Thickness	mg/cm2		50.0	120.0	75.0	75.0			Thickness	mg/cm2		50.0	120.0	75.0	75.0		
THERICSS	mg/ cm2		50.0	120.0	75.0	75.0			THERICSS	mg/ cm2		50.0	120.0	75.0	75.0		
Time estimated	days		1.0	6.0	6.0	6.0	1.0		Time estimated	days		1.0	1.0	10.0	10.0	1.0	
Dose Rate estimated	urem/hr		0.3	0.0	0.8	0.8	0.1		Dose Rate estimated	urem/hr		0.5	0.9	0.8	0.8	0.1	
dose/setup	urem		6.0	0.0	121.0	121.0	2.4	250.3 urem total	dose/setup	urem		12.0	21.6	180.0	180.0	3.1	396.7 urem total
Energy	GeV		4.4	4.4	4.4	4.4	4.4		Energy	GeV		11.0	11.0	11.0	11.0	11.0	
Current			15.0	15.0	15.0	15.0	15.0		Current			15.0	15.0	15.0	15.0	15.0	
Element		Be	Be	Be	Be	Be			Element		Be	Be	Be	Be	Be		
Thickness	mg/cm2		36.0	36.0	36.0	36.0	36.0		Thickness	mg/cm2		36.0	36.0	36.0	36.0	36.0	
Element		AI	AI	AI	AI	С			Element		Al	AI	AI	AI	С		
Thickness	mg/cm2		160.0	160.0	160.0	160.0	100.0		Thickness	mg/cm2		160.0	160.0	160.0	160.0	100.0	
Element		н	D	Т	3He				Element		Н	D	Т	3He			
Thickness	mg/cm2		50.0	120.0	75.0	75.0			Thickness	mg/cm2		50.0	120.0	75.0	75.0		
Time estimated	days		1.0	8.0	20.0	20.0	1.0		Time estimated	days		1.0	1.0	28.0	28.0	1.0	
Dose Rate estimated	urem/hr		0.5	0.9	0.8	0.8	0.1		Dose Rate estimated	urem/hr		0.5	0.9	0.8	0.8	0.1	
dose/setup	urem		12.0	172.8	360.0	360.0	2.9	907.7 urem total	dose/setup	urem		12.0	21.6	504.0	504.0	3.1	1044.7 urem total
					Tota	l Days:	152.0 days		Total Estim	ated Dose		2599.4 uren	n				

The thickness single material in the beam is the Al walls of the target (160 mg/cm²)


Assuming 100% running, the maximum tritium runs could use is ~30% of annual dose budget. (nominal running efficiency is ~50% so likely dose will be close to < 15%)

This is a lower luminosity experiment then the currently running DVCS experiments.

Emergency Response Guideline

Tritium Operational Safety Procedures

- Details of tritium target will be covered in the version controlled tritium target Operation Safety Procedure.
- Everyone working in Hall A will be required to review this OSP and take Tritium I training.
- CANS system will be used to ensure people have been trained (*Note: historically Hall A used the CANS system to control the hall during laser work*)
- Following the example of Radworker I vs. Radworker II, a Tritium II training will be used to train workers who will need to work with and/or near the tritium target.

Summary & To Do List

- Draft COO and ESAD Circulating
 - Added Tritium Information & Training Requirements
 - Added Information about students in the hall from Ed Folts
- Working on updating ERG
 - Updating Map with Tritium Target & Fences
 - Adding Information about Tritium Alarms & Contacts
- Working with Radcon to finalize RSAD documentation
- New OSP Document & New Training In Progress
 - Tritium Target Operational Safety Procedure
 - Tritium I (general) and Tritium II (specialed) training

