On Bin Centering

Evan McClellan

October 11, 2018

1/9

Where to stick your data points, Lafferty and Wyatt

Nuclear Instruments and Methods in Physics Research A 355 (1995) 541-547

NUCLEAR
INSTRUMENTS
& METHODS
IN PHYSICS
RESEARCH
Section A

2/9

Where to stick your data points: The treatment of measurements within wide bins

G.D. Lafferty a.*, T.R. Wyatt b.1

^a Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK ^h PPE Division, CERN, CH-1211 Geneva 23, Switzerland

Received 17 June 1994; revised form received 29 August 1994

Definitions

$$g_{\rm meas} = n_{\rm meas}/\Delta x$$

$$\langle g_{\mathsf{meas}}
angle = rac{1}{\Delta x} \int_{x_1}^{x_2} g(x) dx$$

- $x_1 = left bin-edge$
- $x_2 = \text{right bin-edge}$
- $\Delta x = x_2 x_1$
- g(x) = true generating function

3/9

Not the middle of the bin!

$$x_c = x_1 + \Delta x/2$$

4/9

Not the barycenter!

$$ar{x}_{ ext{true}} = rac{\int_{x_1}^{x_2} x g(x) dx}{\int_{x_1}^{x_2} g(x) dx}$$

$$\bar{x}_{\mathsf{data}} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\lim_{N\to\infty}\bar{x}_{\mathsf{data}}=\bar{x}_{\mathsf{true}}$$

The answer:

$$g(x_{lw}) = \frac{1}{\Delta x} \int_{x_1}^{x_2} g(x) dx$$
$$x_{lw} = g^{-1} \left(\frac{1}{\Delta x} \int_{x_1}^{x_2} g(x) dx \right)$$

 $x_{lw} = large \ width \ (or \ lafferty \ wyatt) \ ordinate$

- \bullet g(x) must be known
- need $g^{-1}(x)$, analytically or numerically

Notes

- Opinion: No bin-centering correction to abscissa!
- ullet Comparing data to model, should use that model to calculate x_{lw}
- If g(x) is linear, then $x_{lw} = x_c = \bar{x}$

What about corrections?

- For bin-by-bin corrections in x, should we use x_{lw} or \bar{x} ?
- Radiative Corrections:
 - Use x_{lw} , since it uses a model anyway
- Positron Subtraction:
 - Probably use x_{lw} ? Need to pick a g(x)...
- Endcap Subtraction:
 - Probably use x_{lw} ? Need to pick a g(x)...
- Hopefully has a very small effect on corrections

What about ratio measurement?

- What about our ratio results?
- Keep ratio as pure as possible!
- We measure r(x) in an x-bin, not at an x-value
- Calculate $r_{\text{meas}}(x)$ first, then decide on x
- For us, r(x) should be pretty linear!

$$r(x) = \frac{g(x)}{h(x)}$$

$$r(x_{lw}) = \frac{1}{\Delta x} \int_{x_1}^{x_2} r(x) dx$$