EMC effect in A=3

Overview of work since last Analysis Day

- Preparing for DNP Oct -30th
- Preparing for PhD committee meeting Nov -30th
 - Working to defend in the Fall
- Week of RC! And BPM calibration for (e,e`k)
- Monte Carlo tuning
- Detector Efficiency →SQL
- EMC effect Calculation

BPM Before and After

Noticed an offset in Y target between MC and data that differences over kinematic.

The offset is not present in the z target. Could still be a beam offset issue (WIP).

Monte Carlo to Data

Monte Carlo to Data

Monte Carlo to Data

Cross section

$$N_e = L * \left(\frac{d\sigma}{d\Omega dE'}\right) * \left(\Delta E'\Delta\Omega\right)\epsilon * A\left(E'\theta\right) + BackGround$$

- L Luminosity $\equiv \#$ of electrons per scattering centers
- $(\Delta E' \Delta \Omega) = \text{size of bin}$
- \bullet $\epsilon =$ efficiencies
- $A(E'\theta) = Acceptance$

$$Yield_{data} = \frac{(N_e - BackGround)}{Efficency} = L * \sigma^{data} * (\Delta E' \Delta \Omega) * A (E' \theta)$$

 $Yield_{MC} = L * \sigma^{mod} * (\Delta E' \Delta \Omega) * A (E' \theta)$

Cross section by Monte carlo ratio method: $\frac{d\sigma}{d\Omega dE'} = \sigma^{mod} * \left[\frac{Yield_{data}(E',\theta)}{Yield_{MC}(E',\theta)} \right]$

Cross section

Isoscalar correction

Using F_2^n/F_2^p data from Nuclear Physics B 371 (1992) 3—31 Nuclear Physics B 371 (1992) 3—31 by the NMC- limit in X from 0.3 -0.7

Results from Tong on F_2^n/F_2^p from MARATHON data

Comparing to results from E03103

$$f_{ISO}^{A} = \frac{\frac{1}{2} \left(1 + \frac{F_2^n}{F_2^p} \right)}{\frac{1}{A} \left[Z + (A - Z) \frac{F_2^n}{F_2^p} \right]}$$

EMC effect

Efficiency of the PID detectors

- •How efficient is it at detected the wanted particles(electrons)?
- •How many electrons are we missing out on?
- • $Cer_{ele+} = N_{E}^{Cer}/N_{E}^{Cal}$ ele saw/ele should of seen from a sample
- •Using binomial error to estimate the error on the efficiency calculation because, dealing with ratio of sub samples.
- •Hanjie made similar efficiency calculations on other detectors, posted in the analysis wiki page, <u>Link</u>

Next!

- Short term!
 - Figure out the y target offset
 - Add detector and analysis efficiency into SQL
- A little further out
 - Complete more in-depth acceptance study focusing on the effect of acceptance in $x_{\rm bi}$.

