Simulating radiative effects in GEANT4

Tyler Kutz Stony Brook University

 $\begin{array}{c} {\rm December}\ 13,\ 2018 \\ {\rm MARATHON}\ {\rm analysis}\ {\rm meeting} \end{array}$

Overview

1. Introduction

2. Simulation overview

 $3.\ {\bf Preliminary\ results}$

Motivation

Do radiative effects cancel when measuring cross section ratios?

- Investigate with GEANT4
- Simulate passage of electrons through all material upstream of spectrometer
- Include complete definition of target gases and cell geometries to identify differences (if any) in radiative effects between targets
- Examine bin smearing resulting from radiative effects

Radiative kinematics

Observed kinematics calculated from beam and detected energy:

$$Q_{obs}^2 = 2E_b E_d (1 - \cos \theta)$$
 $\nu_{obs} = E_b - E_d$ $x_{obs} = \frac{Q_{obs}^2}{2M\nu_{obs}}$

True kinematics calculated from initial and final energy of the Born diagram:

$$Q_{true}^2 = 2E_0 E_f (1 - \cos \theta)$$
 $\nu_{true} = E_0 - E_f$ $x_{true} = \frac{Q_{true}^2}{2M\nu_{true}}$

Geometry

- Air in world volume
- Vacuum in scattering chamber
- 0.2003 mm beryllium window upstream of target
- Target cell details on next slide
- 0.406 mm aluminum scattering chamber window
- 81.6 cm separation between chamber window and Q1
- 0.305 mm Kapton Q1 window
- Detector directly behind Q1 window

Target cell

- Cell thickness (gray) from TGT-RPT-17-007
- Gas volume (blue) based on densities from TGT-CALC-17-020
 - Hydrogen: $(^{1}\text{H})_{2}$ gas at $\rho = 2.832 \text{ mg/cm}^{3}$
 - Deuterium: (²H)₂ gas at $\rho = 5.686 \text{ mg/cm}^3$
 - Tritium: $(^{3}\text{H})_{2}$ gas at $\rho = 3.404 \text{ mg/cm}^{3}$
 - Helium: (³He) gas at $\rho = 2.135 \text{ mg/cm}^3$
 - Pressure calculated for ideal gas at $T=45~\mathrm{K}$

Control flow

Uniform scattering

Uniform scattering process implemented with G4VDiscreteProcess

- Non-physical! Does not sample from cross-sections
- Looking for thorough coverage of phase space

Each scattering event follows these steps, where E_{pre} is the GEANT4 track energy at scattering:

- 1. Sample uniformly from $\cos\theta$ (range depends on HRS angle) and ϕ
- 2. Given θ , sample uniformly from $0 < Q_{true}^2 < 2E_{pre}E_{pre}(1-\cos\theta)$
- 3. Apply internal bremsstrahlung (a function of Q^2) using effective radiator approximation (Mo and Tsai) to obtain E_0
- 4. Calculate E_f , ν_{true} , and x_{true}
- 5. Apply internal bremsstrahlung once again to obtain E_{post}
- 6. Set new electron energy and angle due to "scattering"

Detection and cuts

- After scattering, electrons continue to radiate externally until detected
- Beam energy E_b and detected energy E_d are used to calculate observed kinematic variables
- The following cuts are applied:
 - $|\theta_{TRANSPORT}| < 0.06$
 - $|\phi_{TRANSPORT}| < 0.03$
 - $|\delta p/p| < 0.04$
 - Scattering vertex within |z| < 10 cm by design

Bin smearing

We are interested in smearing between x_{true} and x_{obs} bins

 \rightarrow look at histograms of x_{true} vs. x_{obs}

- Absolute bin contents are not relevant
- Normalize by total number of events to obtain percentage of events that are (or are not) binned correctly

Simulation results

Summary

- GEANT4 program simulates bin smearing due to radiative effects (shown here for kin 1)
- Simulation underway for other kinematic settings
- Additional analysis of output needed to answer final question...
 ...do radiative effects cancel in cross section ratios?

x_{obs} column normalization

x_{true} row normalization

