Extracting the yield for Monte carlo and data

- Monte carlo
 - Generating Monte Carlo events
 - Create Cross section table
 - Weight Monte Carlo events
 - Compare monte carlo to Data for acceptance comparison
 - Extract yield of monte carlo in bins of X_{bi}

- Data
 - Calculate effs
 - Calculate BG
 - Calculate luminosity
 - Extract normalized corrected yield in bins of x_{bj}

Generate events

- Generate events using mc_hrs_single.f
- Barak/Shuji
 https://github.com/JeffersonLab/halla
 -xem-analysis
- Events are generated in a large phase space
 - + or 10 dp
 - + or 100 mr theta and phi
- Spectrometer offsets are read from db_run.dat for the run
 - This entry in db_run is create via scripts by Javier
- Offsets in beam pos, and size of beam are calculate via the data root file and the rastered beam class
- Offsets in target z are set via monte carlo to data comparison for carbon foil targets for the kinematic.

Generate Cross section table

- Using T2_externals to generate born and radiated cross section
- From Dave Gaskell
- One table is created per target per kinematic

Every target:

- Upstream Be window
 - 0.2003 mm with Rad. Len. Of 35.28 cm
 0.000568
- Downstream
 - Al window 0.03556 cm Rad len 8.897 cm
 0.003997
 - Air 81.5974 cm rad len 30390 cm
 0.00288
 - Kapton 0.01778 cm rad len 28.5775cm
 0.000622
 - Total of 0.007299

- Upstream → Be
- Downstream Al, air, Kapton
- Target → 0.0883 g/cm² rad len 42.70 g/cm²
 - 0.00207

Cross section for C12 kin 9

Cross section for C12 kin 9

Run 1395 C12 kin 9

Weighting

- Using Eprime and theta
 - Pick out the Born cross sections and Radiative correction factors that surround the event
 - Use interpolation to calculated the corrected value

Carbon foil run 1207 kin 1

Extract MC yield

- If an event falls into a bin
- Accumulate that event weighted by
 - Born cross section
 - 1/ Radiative correction factor
 - Phase space of generation
 - phi *theta * E`
 - 200 mr * 200mr * 0.20*3.
 1(GeV) = 24.8 sr MeV
 - 1 / Number of Generated events
 - 1 / Number of Runs added together
 - Has been reduced to one run

	Xbjc	Q2	MC_N	le MC	_Yield	MC_Err	or
23	0.47	6.74314	28988.	.0 0.0	000167	9.782120e-	07
24	0.49	6.95108	98248.	.0 0.0	000493	1.574130e-	06
25	0.51	7.18661	159590	.0 0.0	000685	1.715390e-	06
26	0.53	7.45142	173497.	.0 0.	000619	1.487250e-	06 Kin9
27	0.55	7.73269	169783.	.0 0.0	000496	1.203320e-	
28	0.57	7.99745	152808.	.0 0.0	000368	9.411440e-	07
29	0.59	8.23392	99802	.0 0.	000201	6.372050e-	07
30	0.61	8.46025	46887.	.0 0.0	000079	3.666450e-	07
31	0.63	8.63759	5126.	.0 0.0	000008	1.052020e-	07
	Xbjc	Q2	MC_Ne	МС	_Yield	MC_Error	
26	0.53	7.67598	1856.0	5.5849	90e-06	1.296380e-07	
27	0.55	7.84783	43652.0	1.1660	20e-04	5.580900e-07	
28	0.57	8.07546	99578.0	2.2602	10e-04	7.162540e-07	Kin11
29	0.59	8.31263	149440.0	2.8473	70e-04	7.365630e-07	
30	0.61	8.57609	161806.0	2.5254	60e-04	6.278320e-07	
31	0.63	8.85740	160099.0	2.0092	10e-04	5.021470e-07	
32	0.65	9.12272	145145.0	1.4735	00e-04	3.867660e-07	
33	0.67	9.36010	100401.0	8.3533	50e-05	2.636280e-07	
34	0.69	9.59172	56592.0	3.8536	20e-05	1.619910e-07	
35	0.71	9.79528	15949.0	9.0628	60e-06	7.176260e-08	9
36	0.73	9.98782	3.0	1.4335	30e-09	8.276510e-10	Э

Data!!

Calculate eff.

name	PID_cer	PID_ps	PID_sh	PID_NE	Tracking	Trigger	livetime	Total
eff	0.99715	0.993401	0.992158	0.999498	0.987526	0.999902	0.964162	0.936138
err	8.6e-05	0.000388	0.000344	0.006364	0.000237	0	0.000374	0.006401

- Eff = product(eff.) *1/ineff.
- Calculate BG
 - Positron
 - Fit function and parameters supplied by Tong.
 - 1-exp(par1+par2*xbj)

- End cap
 - Table provided by Tong

Kin	НЗ	He3	D2	н
0	0.02342	0.027100	0.018600	0.02922
1	0.02185	0.025120	0.011380	0.02380
2	0.02028	0.022940	0.010200	0.02090
3	0.01630	0.018390	0.008206	0.01780
4	0.01540	0.017270	0.009348	0.01760
5	0.01445	0.015738	0.008640	0.00000
7	0.01177	0.012500	0.008310	0.00000
9	0.00900	0.009740	0.005700	0.00000
11	0.00690	0.007150	0.005121	0.00000

 Currently being rechecked, by Tong and Tyler H.

Luminosity

- L = (charge_{num of ele} * tgt_thickness(g/cm²) * density correction factor * N_a/atomic mass)
 - Convert from cm² to nBarns
- Density correction =par0 + par1*current + par2*current²
- The Luminosity for kinematic is calculated by adding up the luminosity from all the runs in the kinematic.

Calculate yield

- Event by event
 - If an event falls into a bin
 - Accumulate that event weighted by
 - 1/Eff. → Calculated by run
 - BG
 - ECC → Calculated by kin
 - PC → Calculated by event
 - After all runs
 - Normalize by Luminosity of the kinematic
- Bin wise
 - Weight a bin by
 - Eff → Luminosity weighted average
 - ECC → Calculated by kin
 - PC → Calculated using the center of the bin
 - Luminosity

Data to monte carlo comparison D2

Merge Kinematics together using a weighting by Number of electrons

C12

Merge Kinematics together using a weighting by Number of electrons

Data to monte carlo comparison H3

Merge Kinematics together using a weighting by Number of electrons for H3

Cross section ratio

