MARATHON PID Check

Tong Su Marathon Weekly Meeting

Regular Way to Check PID

- 2 PID detectors : Cherenkov and Calorimeter
- Both PID detectors should be more sensitive to electron compare with pion
- Select a pure electron /pion sample from one of the detectors and check the performance in the other one

MARATHON PID difficulty

• More than one kind of "particles" can active the Cherenkov

		Cherenkov	Calorimeter
Sample Selecting	Electron	Х	~
	Pion	Х	difficult
	Something like µ	Х	difficult

A Compromised Solution

• Treat all the non-electron events as whole

	Cherenkov	Calorimeter
electrons	Х	 ✓
Non-electrons	Х	~

• $\begin{cases} P_x^A: \text{Probality for non} - \text{electron pass cer cut} \\ P_e^A: \text{Probality for electron pass cer cut} \\ P_x^B: \text{Probality for non} - \text{electron pass ep cut} \\ P_e^B: \text{Probality for electron pass ep cut} \end{cases}$

• Since clean sample can be selected from Calorimeter, so $P_x^A P_e^A$ can be calculated

A Compromised Solution

- x: number of the non-electron
- e: number of the electron
- $N_{i:}$ number of events with different cut

Cut A	Cut B	Relations *
Х	Х	$x + e = N_0$
~	Х	$P_x^A x + P_e^A e = N_1$
Х	~	$P_x^B x + P_e^B e = N_2$
✓	~	$P_x^A P_x^B x + P_e^A P_e^B e = N_4$

* General Good Electron Cut has been applied

Conclusion

- The efficiency for the two detectors are high and stable for electrons
- Non-electron contamination are low($\approx 0.1\%$) and stable for different target
- Seems we donot need to take care of the PID correction