

Hypernuclear Investigation with Electro-magnetic Interaction 2022

Development of scintillating fiber detector for photon beam profiling at ELPH

Ryoko Kino

Graduate School of Science, Tohoku Univ., Japan

March 15, 2022

Contents

> Characteristics of ELPH photon beam line

Basic design of the new Beam Position Monitor (BPM)

> Operation test experiment at ELPH

 \geq Result of the analysis

> Summary and conclusion

Booster STorage ring at ELPH, Tohoku Univ.

Booster STorage ring (BST ring) at Reserch Center for ELectron PHoton Science (ELPH)

Electron syncrotron
 Injection Beam Energy: 90 MeV
 Ring Top Energy: 0.8 ~ 1.3 GeV

< Orbiting electron beam >

- Injection cycle: ~17 sec.
- Flat top $: \sim 10$ sec.

Characteristics of ELPH photon beamline

March 22, 2022

Development of new Beam Position Monitor

Previous: instant camera films

Disadvantages

- detailed beam position and size
- in real time
- time dependence

new Beam Position Monitor (BPM)

Requirements

- good position resolution
- real time monitoring
- quantitative measuring fine structure of the beam

Basic design of the Beam Position Monitor

Basic Structure

- Scintillation Fibers (φ 0.5 mm) SCSF-78 (Kuraray)
 3 fibers / 1 ch = 1.5 mm / seg
- SiPM

MPPC S13360-1350PE S13360-3050PE (Hamamatsu Photonics K.K.)

Data acquisition system

Expected event rate: ~ MHz / detector —

Not possible with traditional trigger type TDC

Hadron Universal Logic firmware: streaming TDC [3]

Trigger lessDeadtime less

→ High rate torelance !

[3]R. Honda et al., Prog. Theor. Exp. Phys., Issue 12 (2021) 123H01.

Workshop HIEI 2022 - Ryoko Kino, Tohoku Univ.

Readout Circuit

Operation check at ELPH BM4 beam line

automatic movable stage

[4] M. Nanao, T. Ishikawa, H. Shimizu, Research Report of LNS-Tohoku 36, 2003, p. 56.
[5] T. Ishikawa, et al., Nucl. Instrum. Methods Phys. Res. A 622 (2010) 1.

Operation check at ELPH BM4 beam line

Workshop HIEI 2022 - Ryoko Kino, Tohoku Univ.

Quantitative beam profiling

Check the time dependence of beam center position (μ) and size (σ).

The hit distribution(/s) is plotted on the histograms in the horizontal and vertical directions, and determined by fitting. Function: gaussian + gaussian

March 22, 2022

Workshop HIEI 2022 - Ryoko Kino, Tohoku Univ.

s /sinuco

Horizontal direction [mm]

10⁴

10²

Time dependence of the beam position

Gravity directionHorizontal direction

March 22, 2022

Workshop HIEI 2022 - Ryoko Kino, Tohoku Univ.

Fine measurement of beam size

Horizontal directionVertical direction

GeV gamma ray beam envelope[8]

- Beam size of each point:
 Approximately reproduces the theoretical value[8].
- ➢ Beam size increases significantly within a spill.

[8] T. Muto, PASJ2015 WEP003

Summary and conclusion

> Developed photon Beam Position Monitor (BPM) for ELPH BM4 photon beam.

Photon Beam Position Monitor (BPM)

- Basic design: Plastic scintillation fiber (kuraray SCSF-78) Hamamatsu Photonics SiPM (MPPC S13360-1350PE, S13360-3050PE)
- Readout: TOT circuit based on Op-Amp (AD8000) and comparator (LTC6754)
- DAQ: Streaming TDC (FPGA module (HUL))
- > Test experiment using tagged photon beam at ELPH in March 2022
 - Beam profiling can be done with position accuracy: $\Delta \mu \le 10 \ \mu m, \Delta \sigma \le 10 \ \mu m$ for 1 second measurement

Back Up

Booster STorage Ring at ELPH

Injection Beam Energy	Injection Repetition	Ring Top Energy	Storage Beam Current		
90 MeV	~0.05 Hz (typ.)	0.8~1.3 GeV	~30 mA		

Scaling of BM4 Beam Line and NKS2

Plastic scintillation fibers kuraray SCSF-78

- Luminouscolor: blue
 - peak: 450 nm
- ➤ Absorption peak: 2.8 nm
- > Attenuation length: > 4.0 m
- FeatureHigh emission
 - High damping length

MPPC

	pixel pitch (µm)	Effective light receiving surface size (mm)	Aperture ratio (%)		
S13360-1350PE	25	1.3 × 1.3	47		
\$13360-3050PE	50	3.0 × 3.0	74		

■ 電気的および光学的特性 (指定のない場合はTyp. Ta=25 °C)

Hamamatsu Photonics K.K.

		感度波長	長 最大咸度	桧 出効率	ダークカウント*5		端子間			クロス	推奨動作	推奨動作
型名	測定 条件	範囲 入	波長 入p	PDE ^{*4} λ=λp	Тур.	Max.	容量 Ct	増倍率 M	降伏電圧 VBR	トーク 確率	電圧 Vop	電圧の温度 係数 ΔTVop
		(nm)	(nm)	(%)	(kcps)	(kcps)	(pF)		(V)	(%)	(V)	(mV/°C)
S13360-1325CS		$270 \sim 900$		25	70	210	60	7.0 × 105		1		
S13360-1325PE		320 ~ 900				210	60					
S13360-3025CS	Vover	270 ~ 900			400	1200 320	220					
S13360-3025PE	=5 V	320 ~ 900					$7.0 \times 10^{\circ}$		1	VBK T D		
S13360-6025CS		270 ~ 900			1600	5000 12	1280					
S13360-6025PE		320 ~ 900										
S13360-1350CS		270 ~ 900	450	40	90	270	60					
S13360-1350PE		320 ~ 900				270 60						
S13360-3050CS	Vover	270 ~ 900			500	1500	320	1.7 × 10 ⁶	53 ± 5	3	VBR + 3	54
S13360-3050PE	=3 V	320 ~ 900										
S13360-6050CS		270 ~ 900			2000	6000 1280				ľ		
S13360-6050PE		320 ~ 900			2000	6000	1200					-
S13360-1375CS		270 ~ 900		50	90	270	60	60	7		Vbr + 3	
S13360-1375PE	Vover =3 V	320 ~ 900				270 00	00			7		
S13360-3075CS		270 ~ 900			500	1500	220					
S13360-3075PE		320~900				1500	320	4.0 × 10°				
S13360-6075CS		270~900			2000	0000	1200					
S13360-6075PE		320~900			2000	0000	1200					

*4: 検出効率は、クロストークとアフターパルスを含んでいません。

*5: 閾値=0.5 p.e.

注) 上記の特性値は、表中の増倍率が得られる動作電圧における値です (製品に添付されるデータを参照してください)。

LTC6754

- > 短い伝播遅延時間:1.8n(s標準)
- ▶ 低いオーバードライブ分散:1n(s標準)
 - (オーバードライブは **10mV ~ 125mV**)
- ▶ 切り替え速度が高速:890Mbp(s標準)
- ► LVDS 互換の出力段
- ▶ レール・トゥ・レール入力を両方のレールを 超えて拡張
- ▶ 低静止電流:13.4mA
- ▶ 電源電圧範囲:2.4V~5.25V
- ▶ LTC6754ファミリ共通の特長:
- ▶ 入力電源と出力電源が別個
- ▶ 消費電力低減のためのシャットダウン・ピン
- ▶ 出力ラッチと調整可能なヒステリシス
- ➤ SC70パッケージおよび3mm×3mm QFNパッ ケージ
 - LINEAR Technology

BPM3 [4][5][9]

GeV-γビームラインの最下流、標的から2,230 mの距離に設置. 隙間無く並べられた3 mm角のシンチレーションファイバー15本 が水平方向と垂直方向の 2層に重ねられたものである。 BPMの上流には 5 mm厚のプラスチックシンチレータが荷電粒子 除去用に1枚とトリカ^{**} ー生成用に2枚設置されている。

[4] M. Nanao, T. Ishikawa, H. Shimizu, Research Report of LNS-Tohoku 36, 2003, p. 56.
[5] T. Ishikawa, et al., Nucl. Instrum. Methods Phys. Res. A 622 (2010) 1.
[9] 大串 尚永 修士論文 (平成 21 年)

Workshop HIEI 2022 - Ryoko Kino, Tohoku Univ.

BPM3 [4][5][9]

図 2.4: 使用したシンチレーティングファイバーと光電子増倍管。右は シンチレーティングファイバー 16 本 2 層を直角に組んだ様子である。左は 4 × 4 マルチアノード光電子増倍管 H6558-10MOD であ り、1 層に 1 つずつ接続されている。

[4] M. Nanao, T. Ishikawa, H. Shimizu, Research Report of LNS-Tohoku 36, 2003, p. 56.
[5] T. Ishikawa, et al., Nucl. Instrum. Methods Phys. Res. A 622 (2010) 1.
[9] 大串 尚永 修士論文 (平成 21 年)

Workshop HIEI 2022 - Ryoko Kino, Tohoku Univ.

BPM3 [4][5][9]

図 2.5: BPM 筐体の外観。右はビーム下流側から、左はビーム上流側から見た図である。BPM の上流 側にはトリガー用にプラスチックシンチレータが設置されており、上流から VETO, UP, DOWN と称 する。VETO と DOWN は横置き、UP は縦置きであり、3 枚とも光電子増倍管 H7195MOD で読み出 しを行っている。

[4] M. Nanao, T. Ishikawa, H. Shimizu, Research Report of LNS-Tohoku 36, 2003, p. 56.
[5] T. Ishikawa, et al., Nucl. Instrum. Methods Phys. Res. A 622 (2010) 1.
[9] 大串 尚永 修士論文 (平成 21 年)

Data acquisition system

Hadron Universal Logic firmware: streaming TDC [3]

Trigger lessDeadtime less

[3]R. Honda et al., Prog. Theor. Exp. Phys., Issue 12 (2021) 123H01.

Operation check at ELPH BM4 beam line

Time dependence of the beam size

BPM1 (direction from radiator: 3 m) BPM2 (direction from radiator: 5.9 m) BPM3 (direction from radiator: 10.5 m) 1.65 2.6 6.2 [mm] ົມ 2.5 ມ [mm] 1.6 5.9 (a) 2.4 (b) 2.3 (c) 2.3 (c) 2.2 (c) 2. Beam size (σ) .55 Beam size (σ) 5.6 1.5 5.3 .45 5 1.4 2.1 4.7 10 10 6 10 8 2 8 2 6 8 2 6 0 Δ 0 4 Time in a spill [s] Time in a spill [s] Time in a spill [s]

Beam size increases significantly within a spill.

due to the characteristics of Coulomb scattering of the radiator and electron beam[8]

➢ Beam size (avg):

Gravity direction $\sigma = 1.70 \text{ mm}$ **Horizontal direction** $\sigma = 1.56 \text{ mm}$

Beam size increases significantly within a spill.

Gravity direction

Horizontal direction

Radiator and phase space of the beam

= Photon intensity at wire position

Photon beam direction: $\Delta x' = -\frac{\alpha}{\beta} \Delta x$

determined by ring parameters

Twiss Parameter @Radiator:
$$(\alpha, \beta) = (3.69, 1.59) \Rightarrow \frac{\alpha}{\beta} = 0.43$$

[2] F. Hinode, et al., in: Proc. of 2005 PAC 2458;

About the Photon Beam Size

Photon beam size

Ring-specific emittance is not determined, once or many times Coulomb Depends on the nature of scattered electrons.

Figure 4: Profile and phase spaces of recirculating electron at the radiator position after Coulomb scattering. (a) profile, (b) vertical phase space, (c) horizontal phase space.

GeV Gamma-ray beam envelope

Gamma ray beam envelope after radiator. The red: horizontal size, the blue: vertical size.

[3]T. Muto, PASJ2015 WEP003

ρ

Beam size measurement

Gravity direction Horizontal direction

GeV gamma ray beam envelope[6]

- Consistent with the theoretical beam size [8] predicted \succ
- time dependence was also measured

[8] T. Muto, PASJ2015 WEP003

20

Radiator and phase space of the beam

[4]T. Ishikawa, et al., ELPH Experiment : #2815 Annual Report 2015

(Converted to radiator position [mm] assuming that the horizontal axis is the radiator speed of 0.1 mm/s)

Rate Study

The fitting of the non-paralyzed counting correction function was performed in consideration of the dead time.

MPPC bias voltage : 56 V Fit function : $y = \frac{p_0 x}{1 - p_0 p_1 x}$ Fit parameter : $p_0 = (8.5 \pm 3.0) \times 10^6$ $p_1 = (2.4 \pm 0.9) \times 10^{-8}$ $(\chi^2/\text{NDF} = 0.48)$

(::MPPC operation voltage = 54.4 V)

- Rate at beam current 6 mA: ~ 23 MHz
- Saturation is visible in the beam current region above 4 mA, however, beam profiling is possible.

Now, designing the new BPM...

 \rightarrow Plan to reduce the material thickness and reduce the rate