

Mass measurement study of ${}^{3}_{\Lambda}$ H by Decay-pion spectroscopy at MAMI

"MAMI の崩壊パイ中間子分光法による ${}^{3}_{\Lambda}$ H の質量測定研究" Ryoko Kino (Tohoku Univ.) *for the A1 collaboration*

ST2-2022 December 16, 2022

A1 /

A Binding Energy of Hypertriton

- > Still large experimental uncertainties
- > Value still dominated by Emulsion data -77 %

Precise measurements are needed!

S. Acharya *et al.*, Phys. Rev. Lett. (2022) 128
STAR, Nature Phys. 16 (2020) 4, 409-412
M. Juric, Nucl. Phys. B 52, 1 (1973) 1-30

2

Decay-pion spectroscopy at MAinz-MIcrotron

Johannes Gutenberg University, Mainz

December 16, 2022

Mainz

ST2-2022 - Ryoko Kino, Tohoku Univ.

1.1111

3

Previous experiment of Decay-pion spectroscopy

- ➤ Two body decays of hypernuclei: ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}@ 114 \text{ MeV/}c$ ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}@ 133 \text{ MeV/}c$
- > Result of the previous experiment ${}^{4}_{\Lambda}$ H: $B_{\Lambda} = 2.12 \pm 0.01 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \text{ MeV}^{[4]}$

New experiment

Suppression of systematic errors

 \Box Ensuring the yield of $^{3}_{\Lambda}$ H

High precision beam energy measurement

The new Lithium target system

Suppression of systematic errors

Precise field measurement of an Acc. dipole magnet

S. Tomita, Master thesis, Tohoku Univ. (2016)

Interference of undulator radiation

Relativistic γ via undulator eq.:

$$\lambda_{osc} = 2 \gamma^2 \lambda_{light}$$

→ Precision of 18 keV possible

December 16, 2022

6

Beam energy measurement

Figure from PhD thesis of P. Klag (in preparation)

Relativistic γ via undulator eq.:

 $\lambda_{osc} = 2 \gamma^2 \lambda_{light}$

Accuracy of gamma depends on:

- Length measurement
- Monochromator-calibration
- Optical alignment

→ Precision of 18 keV possible

How to see $B_{\Lambda}(^{3}_{\Lambda}H)$ with small errors?

New target system

⁹Be 47mg/cm², 40 – 60 μ A

→ ⁷Li 2430 mg/cm², ~1 μ A

Less background as ⁹Be

No heavy Helium with similar decay pion momenta: $^{7}_{A}$ He: 115.7 $^{8}_{A}$ He: 116.5 [MeV/c] $^{3}_{A}$ H: 114.3 MeV/c)

Maximized rate of hypernuclei Beam direction – 45 mm long

Latest data from the experiment in Oct. 2022

Summary

- Beamtime schedule 2022
 - July 11th Aug. 1st : Commissioning run

(Kaos started up again, confirmed coincidence peak)

Sept. $16^{\text{th}} - \text{Oct. } 17^{\text{th}}$: Physics run \rightarrow Analysis is ongoing!

Apr. – May 2023 : Spectrometer calibration run

- > Momentum setting to observe both of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H
- ➢ New target system → suppress BG & higher luminosity
- \succ New calibration via undulator light interference \rightarrow minimize syst. error

Our goal: total error of ± 20 keV in Λ binding energy

Back Up

Lithium target

Less background as ⁹Be

No heavy Helium with similar decay pion momenta: $^{7}_{\Lambda}$ He: 115.7 $^{8}_{\Lambda}$ He: 116.5 [MeV/c] $^{8}_{\Lambda}$ H: 114.3 MeV/c)

Lithium target

1. P. Eckert, *et al.*, A1 Collaboration, PoS (PANIC2021) 380 (2022) 201 2. P. Achenbach *et al.*, NIM A 1043 (2022) 167500

December 16, 2022