RC Error Study and Plan

Hanjie Liu

February 7, 2019

Current RC input model:

• Get
$$F_{1d}$$
, F_{2d} , F_{1p} , F_{2p} from Bodek fit with R=0.18

•
$$F_{1n} = F_{1d} - F_{1p}, \ F_{2n} = F_{2d} - F_{2p}$$

• $F_{1A} = Z * F_{1p} + (A - Z) * F_{1n}, \ F_{2A} = Z * F_{2p} + (A - Z) * F_{2n}$
• $\sigma = \sigma_{mott}(F_{2A}/\nu + 2\frac{F_{1A}}{m_p}tan^2(\frac{\theta}{2})) \times emcfac(x, A)$

Problem:

- It's not free neutron structure function;
- Doesn't remove isoscalar correction in emcfac(x,A)

Modified model:

• Know F_{2d} ; • Get EMC ratio $\frac{F_2(^{3}He)}{F_{2d}}$, $\frac{F_2(^{3}H)}{F_{2d}}$ or $\frac{F_2(A=3)}{F_{2d}}$ from model; • For $\frac{F_2(A=3)}{F_{2d}}$, need to remove the isoscalar correction, which need F_{2n}/F_{2p} input;

•
$$F_2({}^{3}He) = F_{2d} \times \frac{F_2({}^{3}He)}{F_{2d}}, \ F_2({}^{3}H) = F_{2d} \times \frac{F_2({}^{3}H)}{F_{2d}}$$

To study the RC error:

- *F*_{2d}: 1. Bodek; 2. NMC
 EMC ratio <u>*F*₂(*A*=3)</u> *F*_{2d}: 1. K&P; 2. FE Close, Phys. Rev. D.31.1004 (1985);
- F_{2n}/F_{2p} : 3 curves and probably CJ15
- $(R = \sigma_L / \sigma_T)$ (later..)

The RC error should be the changes by applying different models

Compare the RC factor calculated previously with the one calculated by modified model (F_{2d} from Bodek and EMC from K&P)

H3/He3 rad cross section ratio

H3/He3 RC=born/rad ratio

H3/He3 Before/After ratio