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Motivation

Event-by-event corrections

• Began thinking about event-by-event corrections

• Is it feasible?
• How could uncertainty be determined?

But first, need to consider unfolding
(necessary whether corrections are applied to bins or events)
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Motivation

Unfolding

Experimental cross section σexp and unradiated Born cross section σB are
non-trivially related

“Unfolding” procedure necessary for extracting unradiated cross section

• Iterative unfolding

• Required input: model cross section σmod

• Smearing unfolding

• Required input: Monte Carlo
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Iterative unfolding

Overview

4. RADIATIVE CORRECTIONS TO CONTINUOUS SPECTRA 

i After all the radiative tails from the discrete states have been subtracted 
. 

: from the spectrum we can proceed to do radiative corrections to the continuum. 

. For the continuum it is safe to apply the equivalent radiator method. Since a 

continuum can be regarded as a sum of many discrete states we obtain the result 

by integrating Eq. (3.1) with respect to M”. This was done in Appendix C 

(Eq. (C. 23)). The result is 

x [& f$) + 2(E;Ed2]dE6 ’ (4.1) 

where T’ is given by Eq. (2.7). A should be chosen small enough so that u(Es-RA, E d 
and u(Es, Ep+A) are not appreciably (< 10%) different from u(Es, E d , but should be 

large enough so that t/A is less 0.1. The bremsstrahlung part is a convergent 

integration, hence the expression is correct even when A=O. The ionization part is 

a nonconvergent integration because we have used an asymptotic form. (See Eq. (B. 34).) 
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Mo & Tsai 1. Choose cross section model
σmod

2. Radiate σmod to obtain σrad

3. Compare σrad to σexp

4. Adjust σmod accordingly

5. Repeat 2-4 until σrad ≈ σexp

6. Scale σexp by ratio σrad/σmod
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Iterative unfolding

Implementation example

Iteration example (based on J. Arrington thesis)

For iteration i, scale the model cross section by smooth function of x:

σmod → fi(x)σmod

with f0(x) = 1.

Radiate model and update f(x) at data points n:

fi(xn) = fi−1(xn)×
(
σexp(xn)

σrad(xn)

)
Repeat until

χ2 ≡
∑
n

(σexp(xn)/σrad(xn))− 1

(δσrad(xn)/σrad(xn))2
≤ 1
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Iterative unfolding

Model dependence example (from J. Arrington thesis)
150

Figure 3.27: Three different cross section models used to test the radiative correc-
tion procedure. The solid line is the standard model (for Iron at 15◦). The dashed
line has the ‘smearing’ of the nucleon structure functions removed for the inelastic
contributions, and decreases the width of the quasielastic peak by 20%, keeping the
normalization fixed. The dashed line is a constant cross section of 10 nb/MeV/sr.

good agreement. The ratio of thick to thin is 1.0078±0.0052, which is smaller than

the uncertainty in the ratio of the target thicknesses. Another run, taken at different

kinematics and with significantly lower statistics, gives a ratio of 1.0326±0.014. From

the model dependence, and tests with different target thicknesses, we assign a 2.5%

systematic uncertainty to the radiative corrections.

Because the iterative procedure is applied to each kinematic setting for the exper-

iment, it is somewhat sensitive to the fit to the cross section at the low-ν value of the

data range. For values of ν below the range of the data, the correction to the model is

kept constant at the value from the lowest ν point available. Therefore, fluctuations

in the lowest ν points can have an effect on the model cross section over a large range

of ν values. The only places where there are large corrections to the model are at low

θ and low ν. In this region, the cross section drops rapidly with decreasing ν. There-

fore, the strength coming from this region in the radiative correction is small, and

the model dependence is not very large. However, while the effect is always relatively

small (within the systematic uncertainties we have assigned), the fluctuations in the
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Figure 3.28: Radiative correction factor for three different input models. The top
curve is the correction factor for the three model shown in figure 3.27. The bottom
curve shows the correction factor divided by the value for the standard model used
in the analysis.

data for the low ν points can cause a systematic error for a large range of the data at

that kinematic setting. In addition, correcting each kinematic setting independently

means that the error made may be nearly constant for a single momentum and angle

setting, but then jump at the few percent level between different kinematic settings.

This becomes important when comparing the data taken on different targets. When

comparing the structure function per nucleon for the different targets, the differences

are typically small (<∼10%). If one takes the ratio of structure functions as a function

of x, the systematic uncertainties can lead to a false x dependence. While the errors

made are within the systematic uncertainties assigned, it is important to remember

that the systematic uncertainties are not uncorrelated between the different ν val-
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Multidimensional smearing unfolding

Cross sections

Smearing example (based on S. Joosten thesis)

Kinematic point:
X = (x, Q2)

Experimental cross section in bin i:

dσexp
dX

→ σexp(i) =

∫
i

dX
dσexp
dX

Born cross section in bin i:

dσB
dX

→ σB(i) =

∫
i

dX
dσB
dX
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Multidimensional smearing unfolding

Relating σexp to σB

X = (x, Q2) actual kinematic point

X = (x,Q2) observed kinematic point

P (X|X) probability of observing X given X

(radiative effects)

A(X) spectrometer acceptance function

R(Y |X) probability of observing Y given X

(detector resolution)

Experimental cross section in bin i related to Born cross section in bin j by:

σexp(i) =

∫
i

dY
∑
j

(∫
dX

∫
j

dX R(Y |X) A(X) P (X|X)
dσB
dX

)
8 / 10



Multidimensional smearing unfolding

Smearing matrix

Multiplying previous expression by σB(j)/σB(j) = 1:

σexp(i) =
∑
j

(∫
i
dY
∫
dX

∫
j
dX R(Y |X) A(X) P (X|X) dσB

dX∫
j
dX dσB

dX

)
σB(j)

=
∑
j

S(i, j) σB(j)

If bins are chosen with relatively constant dσB/dX:

σB(j) =
∑
i

S−1(i, j)σexp(i)

S(i, j) is model-independent but must be determined by Monte Carlo
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Comments

Event-by-event corrections

• Both iterative and smearing approaches require binned cross sections

• Event-by-event corrections ruled out?

Iterative unfolding

• Model-dependence minimal at intermediate x, possibly large at high x?

• Iteration tunes model to raw experimental cross section...could the
model possibly be tuned to a cross section ratio?

• Requires same model for both nuclei in ratio
• Correlated errors?

Smearing unfolding

• Independent of cross section model

• Requires Monte Carlo simulation of target
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