Unfolding procedures for radiative corrections

Tyler Kutz

November 15, 2018

Event-by-event corrections

- Began thinking about event-by-event corrections
 - Is it feasible?
 - How could uncertainty be determined?

But first, need to consider unfolding (necessary whether corrections are applied to bins or events)

Unfolding

Experimental cross section σ_{exp} and unradiated Born cross section σ_B are non-trivially related

"Unfolding" procedure necessary for extracting unradiated cross section

- Iterative unfolding
 - Required input: model cross section σ_{mod}
- Smearing unfolding
 - Required input: Monte Carlo

Overview

- 1. Choose cross section model σ_{mod}
- 2. Radiate σ_{mod} to obtain σ_{rad}
- 3. Compare σ_{rad} to σ_{exp}
- 4. Adjust σ_{mod} accordingly
- 5. Repeat 2-4 until $\sigma_{rad} \approx \sigma_{exp}$

6. Scale σ_{exp} by ratio $\sigma_{rad}/\sigma_{mod}$

Implementation example

Iteration example (based on J. Arrington thesis)

For iteration i, scale the model cross section by smooth function of x:

$$\sigma_{mod} \to f_i(x)\sigma_{mod}$$

with $f_0(x) = 1$.

Radiate model and update f(x) at data points n:

$$f_i(x_n) = f_{i-1}(x_n) \times \left(\frac{\sigma_{exp}(x_n)}{\sigma_{rad}(x_n)}\right)$$

Repeat until

$$\chi^2 \equiv \sum_n \frac{(\sigma_{exp}(x_n)/\sigma_{rad}(x_n)) - 1}{(\delta\sigma_{rad}(x_n)/\sigma_{rad}(x_n))^2} \le 1$$

Model dependence example (from J. Arrington thesis)

Cross sections

Smearing example (based on S. Joosten thesis)

Kinematic point:

$$X = (x, Q^2)$$

Experimental cross section in bin i:

$$\frac{d\sigma_{exp}}{dX} \quad \rightarrow \quad \sigma_{exp}(i) = \int_i dX \ \frac{d\sigma_{exp}}{dX}$$

Born cross section in bin i:

$$\frac{d\sigma_B}{dX} \quad \to \quad \sigma_B(i) = \int_i dX \ \frac{d\sigma_B}{dX}$$

Relating σ_{exp} to σ_B

$X = (x, Q^2)$	actual kinematic point
$\overline{X}=(\overline{x},\overline{Q^2})$	observed kinematic point
$P(\overline{X} X)$	probability of observing \overline{X} given X (radiative effects)
$A(\overline{X})$	spectrometer acceptance function
$R(Y \overline{X})$	probability of observing Y given \overline{X} (detector resolution)

Experimental cross section in bin i related to Born cross section in bin j by:

$$\sigma_{exp}(i) = \int_i dY \sum_j \left(\int d\overline{X} \int_j dX \ R(Y|\overline{X}) \ A(\overline{X}) \ P(\overline{X}|X) \ \frac{d\sigma_B}{dX} \right)$$

Smearing matrix

Multiplying previous expression by $\sigma_B(j)/\sigma_B(j) = 1$:

$$\begin{aligned} \sigma_{exp}(i) &= \sum_{j} \left(\frac{\int_{i} dY \int d\overline{X} \int_{j} dX \ R(Y|\overline{X}) \ A(\overline{X}) \ P(\overline{X}|X) \ \frac{d\sigma_{B}}{dX}}{\int_{j} dX \ \frac{d\sigma_{B}}{dX}} \right) \sigma_{B}(j) \\ &= \sum_{j} S(i, \ j) \ \sigma_{B}(j) \end{aligned}$$

If bins are chosen with relatively constant $d\sigma_B/dX$:

$$\sigma_B(j) = \sum_i S^{-1}(i, j) \sigma_{exp}(i)$$

S(i, j) is model-independent but must be determined by Monte Carlo

Comments

Event-by-event corrections

- Both iterative and smearing approaches require *binned cross sections*
 - Event-by-event corrections ruled out?

Iterative unfolding

- Model-dependence minimal at intermediate x, possibly large at high x?
- Iteration tunes model to *raw* experimental cross section...could the model possibly be tuned to a cross section ratio?
 - Requires same model for both nuclei in ratio
 - Correlated errors?

Smearing unfolding

- Independent of cross section model
- Requires Monte Carlo simulation of target