Measurement of coherent $\pi^+\pi^-$ photoproduction on deuteron

Yuichi Toyama for theNKS2 Collaboration

Contents

- Introduction
 - Dibaryon
 - About D_{12}
 - Old measurement of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction
- Experiment
 - Research Center for ELectron PHoton Science (ELPH)
 - Neutral Kaon Spectrometer2 (NKS2)
- Analysis & Result
 - Selection of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction events
 - Invariant mass spectra (event counts)
 - Cross sections
- Discussions
 - Possible scenarios for 2π production & deuteron emission angle distribution
- Future prospects
- Summary & Conclusion

Introduction

- Dibaryon
- D₁₂
- Old measurement of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction
- Goal of this study

What is "dibaryon"?

KT	\mathcal{D}_{IS}	\mathcal{D}_{01}	\mathcal{D}_{10}	\mathcal{D}_{12}	\mathcal{D}_{21}	${\cal D}_{03}$	\mathcal{D}_{30}
	BB	NN	NN	NΔ	NΔ	ΔΔ	ΔΔ
R	Mass formula	А	A	A+6B	A+6B	A+10B	A+10B
	Approx. mass	1878	1878	2160	2160	2348	2348
cule state of 2 baryons? pact 6 quark state?	NN bound state (deuteron) ³ S ₁		NN virtual state (pp, nn, np) ¹ S ₀		WASA/CELSIUS, WASA at COSY d*(2380)		
isospin spi	M = A + B (I(I + 1) + S(S + 1) - 2) A = 1878 MeV B = 47 MeV F.J. Dyson and N.H. Xuong, PRL 13 (1964)					964) 8 [,]	

Predicted 2-barvon states without strangeness

Previous studies of D_{12}

- Experiment
 - B.S. Neganov, L.B. Parfenov, JETP7, 528 (1958).
 - $\pi d \rightarrow pp$ scattering PWA: R. Arndt *et al.*, PRC48, 1926 (1993). B.S. Neganov et al., JTEP7, 0528 (1958).
 - $\pi d \rightarrow \pi d$ scattering PWA: R. Arndt *et al.*, PRC50, 1796 (1994).
 - Coupled channel analysis of the reactions above & pp scattering: C.H. Oh et al., PRC56, 635 (1997).
- Theory
 - Bag model: P.J. Mulders, A.T. Aerts, J.J. de Swart, PRD 21, 2653 (1980).
 - Bag model + π cloud correction: P.J. Mulders, A.W. Thomas, JPG 9, 1159 (1983).
 - πNN three-body Faddeev: A. Gal, H. Garcilazo, NPA 928, 73 (2014).
 - NN scattering including intermediate dibaryon: M.N. Platonova, V.I. Kukulin, NPA 946, 117 (2016).

However, dibaryonic interpretation of D₁₂ was still questionable. i.e. kinematical effect or true resonance? (PLB112,17 (1982) etc.)

Recent experimental data of photoproduction T. Ishikawa et al., PLB789, 413 (2019)

 $M = 2.14 \pm 0.01 \text{ GeV}$ $\Gamma = 0.09 \pm 0.01 \, \text{GeV}$ J^P = 1⁺, 2⁺, or 3⁻

- 3 isoscalar dibaryon, 1 isovector dibaryon
- Isovector dibaryon as a decay product of isoscalar dibaryons

They suggest

$$\gamma d \to R_{IS} \to D_{12} \pi^0 \to d \pi^0 \pi^0$$

We are searching for the other charge state $(d\pi^{\pm})$ by the $\gamma d \rightarrow d\pi^{+}\pi^{-}$

Old measurement of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction

Benz et al., NPB79 (1974) 10.

Old bubble chamber experiment

- Higher E_{γ} (1.1< E_{γ} <5.3 GeV)
- Limited statistics
- Limited t region (**0.04<|t|<0.20 GeV²/c²**, lower d momentum (mom_d \leq 0.4 GeV/*c*))
- $\boldsymbol{\cdot}$ No peak structure in $d\pi$ invariant mass
 - + ρ^0 and PS dist. reproduce the data
- Differential cross section d\sigma/dt of ρ^0 production
- Total cross section ~6µb (E_v~1 GeV)

Experiment Oct. 2010

- Research Center for ELectron PHoton Science (ELPH)
- Neutral Kaon Spectrometer 2 (NKS2)

Research Center for ELectron PHoton Science (ELPH)

2022/	3/22
-------	------

Neutral Kaon Spectrometer 2 (NKS2) M. Kaneta *et al.*, NIMA886 (2018) 88

- ${}^{\bullet}\gamma d \to d\pi^+\pi^-$
- Data taken in Oct. 2010
- $\cdot E_{v} = 0.78 1.08 \text{ GeV}$
- liq. D target (516 mg/cm²)
- $N_{y} = 3 \times 10^{12}$
- Dipole magnet : B ~ 0.42 T, R = 0.8 m
- Hodoscopes (IH and OH): TOF measurement
- MWDC's (CDC and VDC) : Tracking for momentum and vertex finding
- EV: e⁺e⁻ rejection
- Geometrical acceptance: ~1 π sr

Analysis & Results

- Selection of the $\gamma \rightarrow d\pi^+\pi^-$ reaction events
- Invariant mass distributions
- Cross sections

Particle identification

• Good π , p, d separation

Missing mass

- · 3-track analysis (for consistency check, not shown today)
 - Detect 3 charged particles, $d\pi^+\pi^-$
 - Mom & Energy conservation cut

2022/3/22

Invariant mass spectra (event counts)

Differential cross sections $(d\sigma/dM)$

- (3 Breit-Wigner + PS background) \otimes Det. Resolution
 - Mass & Width of ρ^0 were fixed at 0.77 and 0.15 GeV

Differential cross sections $(d\sigma/dM)$

- Weighted average of higher energy points
 - M=2.133±0.001 (stat.)±0.009 (syst.) GeV
 - Γ =0.103±0.002 (stat.)±0.009 (syst.) GeV
- Systematic errors of fitting
 - standard deviation of the all points
 - ρ^0 free fitting result

Lower than N Δ threshold (~2.17 GeV) Narrower than single Δ width (~0.12 GeV)

> Consistent with *D*₁₂ (z=+1) from FOREST (M=2.140±0.011 GeV, Γ=0.091±0.011 GeV)

Total cross section

Discussions

- Possible scenarios for 2π production and deuteron emission angle distribution

Possible scenarios for 2π production and $\cos\theta_d$ distribution

These are separatable by $\cos\theta_d$ ($\gamma d CM$ frame) distribution

if no isovector dibaryon (conventional), $cos\theta_d$ strong backward peak

Quasi-free 2π production (Scenario3, Fix calc.)

Possible scenarios for 2π production and $\cos\theta_d$ distribution

(almost no sensitivity)

Backward enhanced structure

in |t|>0.15 GeV² region

- But not so steep peak
- Can not be explained by Senario3 only

 dσ/dΩ > 0.1 µb/sr in cosθd > 0 ⇒ unconventional process (i.e. Dibaryon)

Comparison with the Previous Measurement (NPB79 (1974) 10.) ²²

Our kinematic region was sensitive to unconventional processes.

- |t|>0.15 GeV² region: Tuned by NKS2 data
- Boundaries:
 - Connection at |t|=0.15 GeV²
 - exp(-b|t|) shape in |t|<0.15 GeV² region
 - 6 µb in 0.04<|t|<0.20 GeV² region
- b~40 GeV⁻² was obtained
 - Same order of ρ⁰ production in 1.8<E_γ<2.5 GeV (NPB79 (1974) 10.)

Our result might observed unconventional process region.

Future prospects

Further analysis of existing data Further experiment

We have well calibrated data! Why not analyze?

- $\gamma d \rightarrow d\pi^+\pi^-$ in $|t| < 0.15 \text{ GeV}^2$ (low mom. *d*) region
 - Suppress $\gamma d \rightarrow pn\pi^+\pi^-$ b.g. by Genfit or(and) kinematical fit of VDC
 - ~60000 events expected (if σ =6 µb in this region and efficiencies are same in my analysis)
- $\gamma d \rightarrow d\pi^+\pi^-\pi^0$
 - D_{03} search
 - η'd nucleus (BE=25 MeV) threshold Eγ~1.15 GeV (out of range)
- Strangeness production (polarization)
 - *K*⁰∧
 - *K*⁺Λ (3-track analysis partly done by T. Fujii, <u>JPS Conf. Proc. 021003</u>)

d missing analysis

- Missing mass of the $\gamma d \rightarrow \pi^+ \pi^- X$ reaction with simulations of • $\gamma d \rightarrow \pi^+ \pi^- d$
 - $\gamma d \rightarrow \pi^+ \pi^- pn$ (quasi-free reaction)

Simulated data of $\gamma d \rightarrow \pi^+\pi^- d$ and $\gamma d \rightarrow \pi^+\pi^- pn$ $\gamma d \rightarrow \pi^+\pi^- d$: Tuned generator for the acceptance estimation of NKS2 $\gamma d \rightarrow \pi^+\pi^- pn$: Quasi-free 2π production (on-shell proton w/ fermi motion, spherical uniform)

Difficult to discriminate them but...

d/p separation by using ToF between the target & IH

- d (or p) w/ IH (inner hodo.) hit
 - Min. mom_{d} : ~350 MeV/ $c \Rightarrow$ ~200 MeV/c
- Cross section of the pπ⁺π⁻: ~100 times larger
- Other available information
 - Hit pattern of VDC&CDC
 - · dE measured by IH
 - Machine learning? Kinematical fit?

Separation of $p\pi\pi$ and $d\pi\pi$

• w/o DC info.

- IH resolution: 200 ps (σ)
- t_0 : time at vertex $\pi^{+/-}$
- ToF : $IH_d t_0$
- Missing mom. : $\gamma d \rightarrow \pi^+ \pi^- X$
- $p\pi\pi$ simulation : QF $p\pi\pi$ (w/ fermi motion)
- Event selection : $\pi\pi$ vertex, d (or p) w/ IH hit, w/o OH hit

27

 $\gamma d \to D_{03} \pi^0 \to D_{12} \pi^{\pm} \pi^0 \to d\pi^+ \pi^- \pi^0$

- Next step of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction analysis
 - d signal by VDC
 - $\pi^+\pi^-$ VDC&CDC
 - + π^0 missing
- Maybe difficult...

Further experiment

- Planning liquid deuterium target exp.
 - An FSI $(\gamma d \rightarrow \Lambda nK^+)$
 - η 'd nucleus search ($\gamma d \rightarrow [d\eta'] \rightarrow d\eta \rightarrow d\pi^+\pi^-\pi^0$)
- Data w/ higher E_{γ} (upto 1.25 GeV) would be accumulated automatically!

Summary & Conclusion

- The cross section of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction in $|t|>0.15 \text{ GeV}^2/c^2$ region
 - First measurement in this kinematic region
 - *E_γ* : 0.78—1.08 GeV
 - Total cross section: ~2µb (almost flat)
- Isovector resonance structure (R_{IV}) in $d\pi^{+/-}$ invariant mass
 - M=2.133 \pm 0.001 (stat.) \pm 0.009 (syst.) GeV < M_N+M_{Δ}~2.17 GeV
 - Γ =0.103±0.002 (stat.)±0.009 (syst.) GeV < Γ_Δ~0.12 GeV
 - Consistent with FOREST (M=2.14 \pm 0.01, Γ =0.09 \pm 0.01 GeV)
 - z=+2, 0 state of *D*₁₂
- Room of further analysis & experiments