Prospects of precise spectroscopy of A hypernuclei with various beams 2021

Light hypernuclear studies at ELPH and MAMI

Tohoku University Sho Nagao

2021/12/10

B_{Λ} measurement at MAMI

Decay width measurement at ELPH

Hypertriton Binding Energy

https://hypernuclei.kph.uni-mainz.de/

Hypertriton Lifetime

Theoretical Predictions

Three-body Faddeev approach:256 psH.Kamada et al., PRC57(1998)1595.Faddeev + attractive pion FSI:213 psA.Gal et al., PLB791(2019)48.

Strong correlation with lifetime $-B_{\Lambda}$ and width $-B_{\Lambda}$. Measurement of B_{Λ} , lifetime, and decay branch is important.

Towards resolving the hypertriton puzzle

Lifetime

- > Data with a different approach.
- > $^{3}\text{He}(\gamma, K^{+})^{3}_{\Lambda}\text{H}$ reaction at ELPH.
- > δτ ~ 10 ps.
- Measurement of decay branch.

Λ Binding Energy

- More precise and accurate measurement.
- Decay pion spectroscopy at MAMI.
- > $\delta B_{\Lambda} \sim 10$ keV (including syst.).

Charge Symmetry Breaking in A=4 system

- ▶ Updated $B_{\Lambda}(0^+)$ of ${}^{4}_{\Lambda}H$ and $B_{\Lambda}(1^+)$ of ${}^{4}_{\Lambda}He$ at MAMI and J-PARC, respectively.
- Large difference for ground state and less for excited state.
- More accurate and data for other states is very important.
- Decay width is also sensitive to this symmetry.

Non-mesonic weak decay width of A=4 hypernuclei

Weak decay is the dominance of $\Delta I=1/2$ channel.

This "rule" can be applied in the short-range interaction or not?

Emitted nucleon has larger momentum in the nonmesonic decay process.

Heavy mesons and baryons in the short distance is important.

$$\frac{\Gamma_p(^4_{\Lambda}\mathrm{H})}{\Gamma_n(^4_{\Lambda}\mathrm{He})} = \frac{1}{2}$$
$$\frac{\Gamma_p(^4_{\Lambda}\mathrm{H})}{\Gamma_n(^4_{\Lambda}\mathrm{He})} = 2$$

⊿I=1/2 dominant

⊿I=3/2 dominant

	τ	$\Gamma p / \Gamma_{\Lambda}$	$\Gamma n / \Gamma_{\Lambda}$
$^{4}_{\Lambda}$ He	255 ⁺²⁷ -27	0.16±0.02	0.01 ^{+0.04} -0.01
$^{4}_{\Lambda}$ H	194 ⁺²⁴ -26	×	×

MAMI

Decay pion spectroscopy

High resolution spectroscopy of low momentum charged pion.Excellent resolution and precision thanks to high quality beam and less material.Small systematic uncertainty thanks to well studied spectrometer.

New Determination of ${}^{4}_{\Lambda}$ H binding energy

Calibration Method of spectrometer

Careful momentum calibration was performed by changing beam energy and central momentum There is an uncertainty of ~ 100 keV on the beam energy itself.

Accurate beam energy measurement

Novel optical interferometry of synchrotron radiation for absolute electron beam energy measurements NIMA 910(2018)147.

Beam Energy Determination with Undulator lights

An example

回折パターン=非分散方向の高次項+フレネル回折 回折パターンを完全にフィット $\rightarrow \delta \gamma = 3 \times 10^{-5}$

Fitting Results

Provided by P.Klag

New Target for the next experiment

Background suppression and higher yield is very important. → Thicker Li target & Lower beam current.

e 50mm 50m

Last : ⁹Be 47mg/cm² 40~60 μA Next : Li 2700 mg/cm² 2~10 μA

NKS2

Hyper experiment with the photon beams

	Meson	Electron	Photon
channel	$p \rightarrow \Lambda$	$p \rightarrow \Lambda$	
	[³ He(π,K) ³ _Λ H]	$[{}^{3}\text{He}(\gamma, K^{+}){}^{3}{}_{\Lambda}\text{H}]$	
beam intensity (/sec)	10 ⁷ π ⁺	$10^{13\sim14} e^{-10} \rightarrow 10^{9\sim10} \gamma^*$	10 ⁷ γ
Target	a few g/cm ²	0.1 g/cm ²	a few g/cm ²
Resolution (ΔΕ/Ε)	10-3	10-4	10-2
Acceptance	\sim 100 msr	\sim 10 msr	200 msr
Background	low	high	mid.

Photon beam facility

ELPH (Tohoku) has an electron synchrotron ring (BST). Max. Beam energy: 1310 MeV Max. Beam current: 30 mA. Two tagged photon beam course: BM4 and BM5 Photon beam characteristics:

> Intensity: 1 MHz (at BST current =2 mA) Energy Range: 800~1250 MeV with 5 MeV bins (W = 1550 ~ 1800) Time resolution: ~100 ps (rms)

NKS2 spectrometer

Yield estimation

 $N_{C12L} = 400$

Detector Development

Prospects of precise spectroscopy of Λ hypernuclei with various beams 2021 2021/12/10

Summary

Precise measurement of light hypernuclei is important resolving the effective AN interaction.

- Hypertriton binding energy and lifetime inconsistency
- > Measurement of hypernuclear binding energy and decay width is important

Experimental approach

More accurate B_Λ measurement with decay pion spectroscopy at Mainz (Mid. 2022~) High intensity electron beam and new Li target will be used.
δB_Λ ~ 10 keV will be expected.
More precise lifetime measurement with (γ,K⁺) reaction at ELPH (Early 2022~) Real photon beam and He target will be used.
δτ ~ 10 ps will be expected.