Electroproduction of medium- and heavy-mass hypernuclei

Petr Bydžovský,

Daria Denisova, Dimitrios Petrellis, Dalibor Skoupil, and Petr Veselý

Outline:

Introduction

Formalism of DWIA

- impulse approximation in optimal factorisation,
- elementary amplitude in a general two-component form
- optimum on-shell approximation

Results: effects in the cross sections from

- kinematics (Fermi motion, the mass),
- kaon distortion,
- ΛN interaction.

Predictions for the JLab experiments on ${}^{40}_{\Lambda}$ Ca, ${}^{48}_{\Lambda}$ Ca, and ${}^{208}_{\Lambda}$ Pb. Summary

More information in Phys. Rev. C 106, 044609 (2022) and 108, 024615 (2023).

 $Introduction - Why and how to study hypernuclei?$

• a direct investigation of the YN interaction is quite complicated, e.g. Λp scattering in the liquid-hydrogen target

$$
\gamma + p \to K^+ + \Lambda
$$

$$
\Lambda + p \to p + \pi^- + p'
$$

[see J. Rowley etal (CLAS Collaboration), Phys. Rev. Lett. 127, 272303 (2021)], information on the bare YN interaction is limited (Nijmegen model)

• the γ -ray and reaction spectroscopy of Λ hypernuclei can provide information on the spin-dependent part of an effective ΛN interaction

$$
V_{\Lambda N} = V_0 + V_\sigma\ \vec{s}_\Lambda\cdot\vec{s}_N + V_\Lambda\ \vec{\ell}_{\Lambda N}\cdot\vec{s}_\Lambda + V_N\ \vec{\ell}_{\Lambda N}\cdot\vec{s}_N + V_T\ S_{12}
$$

in hypernuclei one can study Λ–Σ mixing: $\Lambda + \mathsf{N} \longleftrightarrow \Sigma^0 + \mathsf{N};$ charge symmetry breaking in mirror hypernuclei: $^{4}_{\Lambda}$ He – $^{4}_{\Lambda}$ H, $^{16}_{\Lambda}$ N – $^{16}_{\Lambda}$ O; and non mesonic weak decays of Λ : $\Lambda N \longrightarrow nN$

イロト イ押 トイヨ トイヨ トー ヨ

Introduction – the γ -ray (classical) spectroscopy

• an example of γ -ray transitions in the hadron-induced reaction

 $\pi^+ + ^7$ Li \rightarrow K⁺ $+ ^7$ Li $^*_\Lambda \rightarrow ^7$ Li $_\Lambda + \gamma +$ K⁺

with K⁺ and γ detected in coincidence

- \bullet γ 's are measured by Ge detector array with a high resolution ≈ 1 keV
- analysis of spectra was done for p-shell hypernuclei \rightarrow the effective interaction $V_{\Lambda N}$ was obtained

[D. J. Millener, Nucl.Phys. A 804, 84 (2008)]

- **o** limitations:
	- only the low-lying states are determined (below the particle emision threshold)
	- the ground-state binding energy cannot be determined

Λ hypernucleus is a relatively long living system $\approx 10^{-10}$ s

by H. Tamura

イロト イ押ト イヨト イヨト

 200

$Introduction - the reaction spectroscopy$

- **•** the reaction spectroscopy allows to study also the high-excited states e.g. here those with Λ in the p orbit
- missing mass spectrum in $e + {}^{12}C \rightarrow e' + K^+ + {}^{12}B^*_{\Lambda}$ where e' and \mathcal{K}^+ are detected
- **•** the energy resolution is worse than in the γ spectroscopy but below 1 MeV

M. Iodice at al, Phys. Rev. Lett. 99, 052501 (2007)

Introduction – electroproduction of hypernuclei

one can achieve a better energy resolution than in the π^+ and K^- induced reactions

large momentum transfer: $q_{\Lambda} > 250$ MeV/c

 \bullet one can also study the reaction mechanism: kinematical effects, factorization, off-shell effects, kaon distortion,...; and test the by Hashimoto and Tamura **by Hashimoto and Tamura**

$Introduction - electromagnetic$

- o other characteristics of electroproduction:
	- the electro-magnetic interaction is well known and weak ($\alpha \approx 1/137$)
		- \rightarrow the one-photon exchange approximation is very good which simplifies description to production by virtual photons: $A(\gamma_v, K^+)H$
	- production is on the proton
		- \rightarrow other hypernuclei than in (π^+,K^+) and (K^-,π^-) reactions
	- if \mathcal{K}^0 is detected then production goes on the neutron in (γ, \mathcal{K}^0)
	- a strong spin-flip \rightarrow the highest-spin states in multiplets dominate
- typical kinematics in experiments:
	- a small electron scattering angle and small photon virtuality $\mathsf{Q}^2=-\mathsf{q}^2$ \rightarrow this is to achieve sufficiently big virtual photon flux (Γ),
	- kaon is detected along the photon direction (z-axis) at a very small kaon angle (θ_K)
- To obtain reliable information from hypernucleus electroproduction data we need to understand the reaction mechanism well,
	- e.g. to estimate systematic uncertainties due to various approximations.

Formalism – kinematics in electroproduction

• production on the proton: $e(p_e) + {}^A Z(P_A) \longrightarrow e'(p'_e) + \mathsf{K}^+ (P_K) + {}^A_A (Z-1)(P_H)$ photon energy and momentum: $E_\gamma = E_e - E_e^\prime$ and $\vec{q} = \vec{p}_e - \vec{p}_e^\prime$ • in the laboratory frame ($\vec{P}_A = 0$):

Reaction (Hadronic) Plane

kinematics in an experiment: E_e , E_e' , θ_e , θ_{Ke} , Φ_K $\rightarrow \epsilon$, Γ, q = p_e – p_e, Q² = –q², | \vec{P}_{K} |, θ_{K} ...

◆ロト ◆母ト ◆ミト → ミト

Formalism – the cross section

• the unpolarized triple-differential cross section

$$
\frac{d^3\sigma}{dE'_e d\Omega'_e d\Omega_K} = \Gamma \left[\frac{d\sigma_T}{d\Omega_K} + \epsilon_L \frac{d\sigma_L}{d\Omega_K} + \epsilon \frac{d\sigma_{TT}}{d\Omega_K} + \sqrt{2\epsilon_L(1+\epsilon)} \frac{d\sigma_{TL}}{d\Omega_K} \right]
$$

 $-$ T and ϵ are virtual photon flux factor and polarization, respectively, $\epsilon_{\mathsf{L}}=\epsilon \;Q^2/E_\gamma^2$, and $d\sigma/d\Omega_{\mathsf{K}}$ are separated cross sections – $d\sigma_T$ dominates due to very small $Q^2 \leftrightarrow$ photoproduction $(Q^2= 0)$ – d σ_TL is important even for small Q^2 :

			$E \t J_H^P \t \theta_{K_{\gamma}}^{lab}$ do do $\tau \epsilon_L d\sigma_L$ $\epsilon d\sigma_{TT}$ $\sqrt{2\epsilon_L(1+\epsilon)}d\sigma_{TL}$ $d^3\sigma$	
	0.0 1 ⁻ 1.8 36.768 42.505 0.251 0.040 0.116 2^- 1.8 127.898 148.198 1.083 0.364		-6.028 -21.747	0.640 2.227

the cross sections in ¹²C(e, e'K⁺)¹²B with $Q^2 = 0.06$ (GeV/c)²

 \rightarrow the transverse-longitudinal interference terms contribute more than 10% \rightarrow there is a difference between photo- and electroproduction calculations

$Formalism - the impulse approximation$

- production by virtual photons: $\gamma_v(q) + A(P_A) \longrightarrow H(P_H) + K^+(P_K)$
- in IA the production goes on individual protons which is well justified for large momenta: $|\vec{q}| > 1$ GeV/c $\Rightarrow \lambda_B < 0.2$ fm
- the many-particle matrix element

$$
\langle \Psi_{\rm H} | \sum_{i=1}^{Z} \mathcal{X}_{\gamma} \mathcal{X}_{\rm K}^{*} \mathcal{J}_{\mu}^{i} (p_{\Lambda}, P_{K}, p_{\rho}^{i}, q) | \Psi_{\rm A} \rangle
$$

- $\Psi_{\rm H}$, $\Psi_{\rm A}$ hypernucleus and nucleus nonrelativistic wave functions
- \mathcal{J}^i_μ elementary production amplitude in two-component form

- \mathcal{X}_{γ} photon plane wave
- X_{K} kaon distorted wave in eikonal approximation:
	- a good approximation as $|\vec{\mathsf{P}}_\mathcal{K}| \approx 1$ GeV/c and the KN interaction is weak

$Formalism - the optimal factorization$

- **•** the elementary amplitude is integrated over the proton momentum \vec{p}_p in the many-particle matrix element
- assuming a constant effective proton momentum the elementary amplitude can be taken out of the integral and we get the hypernucleus-production amplitude in the optimal-factorization approximation (OFA)

$$
\mathcal{T}_{\mu} = Z \operatorname{Tr} \left[\mathcal{J}_{\mu} (\vec{P}_{K}, \vec{p}_{\text{eff}}, \vec{q}) \int d^{3} \xi \, e^{i B \vec{\Delta} \cdot \vec{\xi}} \, \mathcal{X}_{K}^{*} (\vec{p}_{K}, B \vec{\xi}) \times \int d^{3} \xi_{1} \dots d^{3} \xi_{A-2} \, \Phi_{A} (\vec{\xi}_{1}, \dots \vec{\xi}_{A-2}, \vec{\xi}) \, \Phi_{H}^{*} (\vec{\xi}_{1}, \dots \vec{\xi}_{A-2}, \vec{\xi}) \right]
$$

with still unspecified effective momentum $\vec{p}_{\textit{eff}}$, the momentum transfer $\vec{\Delta}=\vec{q}-\vec{P}_K$, Jacobi coordinates $\vec{\xi}$, and $B = (A-1)/(A-1+m_0/m_0)$

- OFA is also used to describe the π , p , and \bar{p} scattering off nuclei
- in previous calculations the "frozen-proton" approximation, $\vec{p}_{\text{eff}} = 0$ was used as in the Lab frame the amplitude $\mathcal{J}_j(\vec{P}_K,0,\vec{q}\,)$ has a simple two-component form – only six CGNL amplitudes F_i .

KONKAPRA BRADE

$Formalism - the elementary amplitude in a two-component form$

• in many-particle calculations the elementary amplitude is rewritten

$$
\mathcal{J}\cdot\varepsilon=\overline{u}_{\Lambda}(p_{\Lambda})\,\gamma_5\left(\sum_{j=1}^6\hat{M}_j\cdot\varepsilon\;A_j(s,t,Q^2)\right)u_{\rm p}(p_{\rm p})=X^+_{\Lambda}\,\left(\vec{J}\cdot\vec{\epsilon}\right)\,X_{\rm p}
$$

where \vec{J} has the two-component form and its time component was eliminated using $\epsilon_\mu=\varepsilon_\mu-\varepsilon_0\, \mathsf{q}_\mu/\mathsf{q}_0=$ $($ $0,\,\vec{\epsilon}$ $)$; X_x are Pauli spinors, $\mathsf{s}=(\mathsf{q}+\mathsf{p}_\mathsf{p})^2,\ t=(\mathsf{q}-\mathsf{P_K})^2$ • a general two-component form has 16 terms

$$
\vec{J}\cdot\vec{\epsilon}=G_1(\vec{\sigma}\cdot\vec{\epsilon})+G_2\,i(\vec{p}_p\times\vec{q}\cdot\vec{\epsilon})+\dots G_{15}(\vec{\sigma}\cdot\vec{P}_K)(\vec{p}_p\cdot\vec{\epsilon})+G_{16}(\vec{\sigma}\cdot\vec{P}_K)(\vec{P}_K\cdot\vec{\epsilon})
$$

the CGLN-like amplitudes G_i are written via A_i and not all of them are independent • in the special case: $\vec{p}_p = 0$ (similarly in the c.m. frame, $\vec{p}_p = -\vec{q}$)

$$
\vec{J}_{LAB} \cdot \vec{\epsilon} = G_1(\vec{\sigma} \cdot \vec{\epsilon}) + G_3 i(\vec{P}_K \times \vec{q} \cdot \vec{\epsilon}) + G_8(\vec{\sigma} \cdot \vec{q}) (\vec{q} \cdot \vec{\epsilon}) +
$$

\n
$$
G_{10}(\vec{\sigma} \cdot \vec{q}) (\vec{P}_K \cdot \vec{\epsilon}) + G_{14}(\vec{\sigma} \cdot \vec{P}_K) (\vec{q} \cdot \vec{\epsilon}) + G_{16}(\vec{\sigma} \cdot \vec{P}_K) (\vec{P}_K \cdot \vec{\epsilon})
$$

the general two-component form was already used by Mart et.al for $^3_\Lambda \mathsf{H}$ [Nucl. Phys. A 640, 235 (1998)] イロト イ押ト イヨト イヨト

$Formalism - the spherical amplitudes$

• it is convenient to use the spherical components

$$
\vec{J}\cdot\vec{\epsilon}=-\sqrt{3}\,[\,J^{(1)}\otimes\epsilon^{(1)}\,]^0=\sum_\lambda(-1)^{-\lambda}\,J^{(1)}_\lambda\epsilon^{(1)}_{-\lambda}=\sum_{\lambda\mathcal{S}\xi} \;(-1)^{-\lambda}\,\mathcal{F}^{\mathcal{S}}_{\lambda\xi}\,\sigma^{\mathcal{S}}_\xi\,\epsilon^{(1)}_{-\lambda}
$$

where ${\cal F}_{\lambda \xi}^{\cal S}$ are the spherical amplitudes with ${\cal S}=0,1$ (spin non-flip and flip) and with projections λ (photon), $\xi=\pm 1,0;$ σ_{ξ}^{1} are the spherical Pauli matrixes and $\sigma^{0}=1$

• then explicitly

$$
\begin{array}{rcl} \vec{J}\cdot\vec{\epsilon}=&\;\; -\;\; \epsilon_{\;1}^{\;1}\left(\mathcal{F}_{-10}^{\;0}+\sigma_{\;1}^1\,\mathcal{F}_{-11}^{\;1}+\sigma_{0}^1\,\mathcal{F}_{-10}^{\;1}+\sigma_{-1}^1\,\mathcal{F}_{-1-1}^{\;1}\,\right)+\\& +\;\; \epsilon_{\;0}^{\;1}\left(\mathcal{F}_{00}^{\;0}\;+\sigma_{1}^1\,\mathcal{F}_{01}^{\;1}+\sigma_{0}^1\,\mathcal{F}_{00}^{\;1}+\sigma_{-1}^1\,\mathcal{F}_{0-1}^{\;1}\,\right)-\\& -\;\; \epsilon_{-1}^{\;1}\left(\mathcal{F}_{10}^{\;0}\;+\sigma_{1}^1\,\mathcal{F}_{11}^{\;1}+\sigma_{0}^1\,\mathcal{F}_{10}^{\;1}+\sigma_{-1}^1\,\mathcal{F}_{1-1}^{\;1}\,\right)\end{array}
$$

- the spherical amplitudes $\mathcal{F}^{\pmb{S}}_{\lambda\xi}$ are expressed via the CGLN-like amplitudes $\pmb{G}_{\!i}$.
- here we will use the elementary amplitudes: SLA [Phys. Rev. C 53, 2613 (1996); 58, 75 (1998)] BS3 [Phys. Rev. C 93, 025204 (2016); 97, 025202 (2018)]

$Formalism - the optimum on-shell approximation$

- **•** the general form of elementary amplitude allows to use "arbitrary" \vec{p}_{eff}
- the asumptions:

- $\begin{array}{ccc}\n\mathbb{R}^{\times} & \text{ many-body energy-momentum conservation} \\
\hline\n\text{holds} & \rightarrow |\vec{P}_{K}|_{mb} \\
\mathbb{R}^{\Lambda} & \text{ binding effects are neglected: } e_{p} e_{\Lambda} \approx 0 \\
\text{(A-1)} & \rightarrow \text{the elementary amplitude is on-shell:}\n\end{array}$ holds \rightarrow $|P_K|_{mb}$
	- binding effects are neglected: $e_{\sf p} e_{\sf \Lambda} \approx 0$ – the elementary amplitude is on-shell: p and Λ are on-mass-shell and $q + p_p = P_K + p_\Lambda$
- these asumptions can only be accomplished with a special "optimum" value of \vec{p}_{eff} where the magnitude of the optimum momentum satisfies

$$
E_{\gamma}+\sqrt{m_{p}^2+(\vec{p}_{opt})^2}=\sqrt{m_{\Lambda}^2+|\vec{P}_{K}|^2_{mb}}+\sqrt{m_{\Lambda}^2+(\vec{\Delta}-\vec{p}_{opt})^2}
$$

with the momentum transfer $\vec{\Delta} = \vec{q} - \vec{P}_K$. $|\vec{p}_{opt}|$ is not unique, it depends on $\theta_{\Delta p}$. Note that in calculations with frosen-proton ($\vec{p}_{eff} = 0$) and on-shell elementary amplitude there are two values of kaon momnetum $|\vec{P}_K|_{mb} \neq |\vec{P}_K|_{2b}$.

one can fix $|\vec{p}_{opt}|=p_{mean}=\sqrt{2\mu\langle\,T_{kin}\rangle}$ and determine $\theta_{\Delta p}$ $\left\{ \begin{array}{ccc} -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0$

目

 200

$Formalism - further details$

- partial-wave decomposition: $\;\; \mathcal{X}^*_{\mathsf{K}}\, \mathcal{X}_\gamma = \sum \mathsf{F}_{\mathsf{LM}}(\mathcal{B}|\vec{\xi}\,|,\vec{\Delta}) \; \mathsf{Y}_{\mathsf{LM}}(\hat{\xi})$ where F_{LM} includes the spherical Bessel function in PWIA or a projected kaon distorted wave in DWIA
- the kaon distorted wave function in eikonal approximation with $\mathsf{V}^{\mathtt{1st}}_{\mathrm{opt}}$ depends on $\sigma_{\mathsf{KN}}^{\mathsf{tot}},\,\alpha_\circ=\mathsf{Re}\;f^{\mathsf{KN}}(0)/\mathsf{Im}\;f^{\mathsf{KN}}(0),$ and nucleus density $\rho(\vec{r}\,);$ $f^{KN}(0)$ is the isospin averaged forward angle amplitude from a separable model with partial waves $\ell = 0, 1, ... 7$ ($0 \le E_{kin} \le 2$ GeV);
- single-particle basis: $|\alpha\rangle = |n \ell \frac{1}{2} j \rangle$
- the many-particle structure is included via reduced matrix elements of the single-particle operator (OBDME) $(\Psi_H(J_H) || \left[b_{\alpha'}^+ \otimes a_\alpha \right]^J || \Psi_A(J_A))$ obtained from the shell-model, Tamm-Dancoff,... calculations
- the radial part of the transition operator is given by radial integrals: ${\cal R}^{LM}_{\alpha'\alpha}=\int_0^\infty$ dr r 2 $R^*_{\alpha'}$ F $_{LM}$ R_α $\;\;$ where R_α are the radial single-particle wave functions of p and Λ (HO, Woods-Saxon, HF)

Formalism – the differential cross section

• it is suitable to introduce reduced (partial-wave) amplitudes:

$$
\mathcal{T}_{\lambda}^{(1)} = \sum_{Jm} \frac{1}{[J_H]} C_{J_A M_A Jm}^{J_H M_H} A_{Jm}^{\lambda}
$$

which read as

$$
A_{Jm}^{\lambda}=\frac{1}{[J]}\sum_{\mathcal{S}\eta}\mathcal{F}_{\lambda\eta}^{\mathcal{S}}\sum_{\mathcal{LM}}C_{\mathcal{LMS}\eta}^{Jm}\sum_{\alpha'\alpha}\mathcal{R}_{\alpha'\alpha}^{LM}\,\mathcal{H}_{\ell'j'\ell j}^{LSJ}\left(\Psi_{H}||\left[b_{\alpha'}^{+}\otimes a_{\alpha}\right]^{J}||\Psi_{A}\right)
$$

• the transversal response function:

$$
\frac{d\sigma_T}{d\Omega_K} = \frac{\beta}{2(2J_A+1)} \sum_{Jm} \frac{1}{2J+1} \left(|A_{Jm}^{+1}|^2 + |A_{Jm}^{-1}|^2 \right)
$$

• the longitudinal response function is given by the longitudinal component of the partial-wave amplitude:

$$
\frac{d\sigma_L}{d\Omega_K} = \frac{\beta}{2J_A+1} \sum_{Jm} \frac{1}{2J+1} |A_{Jm}^0|^2
$$

4 D F

[P. B. et al, PHYSICAL REVIEW C 108, 024615 (2023)]

→ 何 ト → ヨ ト → ヨ ト

€ □ E

 QQ

э

$Results - the proton Fermi motion effects$

a dependence on E_γ with $Q^2=0.06$ (GeV/c) 2 , $\varepsilon=0.7$, $\Phi_K=180^\circ$, $\theta_{Ke}=6^\circ$

– the selection rule: $A^0_{Jm} \sim C^{J_H 0}_{1010} \Rightarrow$ the longitudinal contributions only for even J_H

- the longitudinal contributions depend quite strongly on \vec{p}_{eff}
- the effects depend on the elementary amplitude

 \rightarrow at $E_{\gamma} > 2.2$ GeV BS3 predicts rising cross sections

$Results - the proton Fermi motion$

the separated cross sections for the excited state (11.132, 3⁺) of $^{12}_{\Lambda} \text{B}$

– the longitudinal part of the reduced amplitude contributes: $A_{30}^0 \sim {\sf C}_{2010}^{30} = \sqrt{3/5}$ – d σ_L and d σ_{τ} are important making the difference between photoproduction (d σ_T) and electroproduction (d σ) results even at a small photon virtuality, $Q^2 = 0.06$ GeV²

Fermi motion effects – very important in $d\sigma_L$ and $d\sigma_{\rm{TL}}$

– depend on $|\vec{p}_{eff}|$ and elementary amplitude

Results – mass effects in the cross sections of $\frac{208}{\Lambda}$ TI

- an uncertainty in the ground state hypernucelus mass M_{H}^{0} (the binding energy)
- considering a shift of the hypernucleus mass due to excitation: $M^*_H = M^0_H + E^*$

$$
\Rightarrow |\vec{P}_K|, |\vec{\Delta}|, |\vec{p}_{opt}|, \, \mathcal{F}^S_{\lambda\eta} \text{ and } \mathcal{R}^{LM}_{\alpha'\alpha} \text{ depend on } E^*
$$

 $-$ effects of the mass shift in the states $(E^*[MeV], J^P)$ of ${}^{208}_{}$ TI (PWIA, TD_A, Nijmegen F YNG, $E_\gamma=1.5$ GeV, $Q^2=0.0383$ GeV², $\theta_K=8^\circ)$

Results – effects from kaon distortion in $^{12}_{\Lambda}$ B

- comparison of PWIA and DWIA cross sections: diff=100*(PWIA-DWIA)/PWIA in kinematics of the E94-107 JLab experiment, $E_\gamma =$ 2.21 GeV, $|\vec{P}_\mathcal{K}|$ $=$ 1.96 GeV, and $\theta_K = 1.8^{\circ}$ with the KN scattering at $W_{KN} = 2.2$ GeV and $\sigma_{KN}^{tot} = 17.83$ mb
- differences are 35(higher states)–45(lower states)% similarly in SM and TD_{Λ} , except the state (11.542, 1⁺) where the leading contributions $0p_{3/2} \rightarrow 0p_{1/2}$ and $0p_{3/2} \rightarrow 0p_{3/2}$ compose themselves together, opposite to the case of the weakly populated state $(10.706, 1^+)$ where the relative phase is negative (the pahse is given by the sign at the OBDME and the radial integral)

Results – effects from kaon distortion in ${}^{48}_{\Lambda}K$

– the kaon-nucleus optical potential

$$
\mathsf{V}^{\text{1st}}_{\text{opt}}(\vec{r}) = -\beta \, \sigma^{\text{tot}}_{\text{KN}}(s) \, \frac{1}{2} [\, \mathrm{i} + \alpha(s) \,] \, \rho(\vec{r})
$$

– the kaon distorted wave function in eikonal approximation

$$
\chi^*(\vec{r}) = \exp\left[-i\vec{P}_K \cdot \vec{r} - b\,\sigma_{KN}^{\text{tot}}\,(1 - i\alpha)\int_0^\infty dt\,\rho(\vec{r} + \hat{p}\,t)\right]
$$

– distortion is 50–60% and depends mainly on behavior of $\rho(\vec{r})$ in the peripheral region

Results – effects from kaon distortion in ²⁰⁸₀TI are \approx 50–90%

重

Results – kaon distortion

the different effects are due to the radial integral:

$$
\mathcal{R}^{LM}_{\alpha'\alpha} = \int_0^\infty dr \, r^2 \, R^*_{\alpha'} F_{LM} \, R_\alpha
$$

real in PWIA and complex in DWIA

Results – effects from the nucleus-hypernucleus structure

- Tamm-Dancoff self-consistent many-body calculations using the NN Daejeon16 interaction with a phenomenological density dependent (DD) term and effective YN interactions;
- the effective YN interactions: Nijmegen-F and Jülich A YNG with $k_F = 1.34$ fm
- kinematics: $E_\gamma=1.5$ GeV, $Q^2=0.012$ GeV 2 , $|\vec{P}_{\sf K}|=1.176$ GeV, $\theta_{\sf K}=0.5^\circ$
- the rising background in TD_A is due to many weakly populated states
- the result by Motoba and Millener are from the proposal of the JLab experiment E12-20-013

 $Results - tuning$ the nucleus structure

- nucleus is described as a core-particle system: $|^{208}{\rm Pb}_{\rm g.s.}\rangle=\sum |^{207}{\rm Tl}(\pmb{E}_{\rm c},\pmb{J}_{\rm c}^{P_{\rm c}})\rangle\otimes|(n\pmb{i}\pmb{j})_{\rm p}\rangle$
- similarly hypernucleus: $|^{208}_{\Lambda} \text{TI} (E_{\text{H}}, J_{\text{H}}^{\text{Ph}}) \rangle = \sum |^{207} \text{TI} (E_{\text{c}}, J_{\text{c}}^{\text{P}_{\text{c}}}) \rangle \otimes |(n'l'j')_{\Lambda} \rangle$
- the core nucleus is a "spectator" in the impulse approximation
- spectrum of the core nucleus calcualted in TD_A with the NN Daejeon16 interaction and the DD term (original) is modified introducing phenomenological energies
	- \longrightarrow modification of the $^{208}_{\Lambda}$ TI excitation spectrum

Results – electroproduction of $\frac{52}{\Lambda}V$

- the excitation spectrum in ${}^{52}Cr(e,e'K^+){}^{52}_\Lambda V$
- the NN Daejeon16 interaction with the phenomenological density dependent term
- the Nijmegen-F and Jülich A YNG interaction with $k_F = 1.34$ fm
- the BS3 amplitude in the optimum on-shell approximation
- kinematics: $E_\gamma=1.3$ GeV, $Q^2=0.003$ GeV 2 , and $\theta_{\mathsf{K}}=3^\circ$
- comparison with older results from P.B., M.Sotona, T.Motoba, K.Itonaga, K.Ogawa, and O.Hashimoto, Nuc. Phys. 881, 199 (2012).

Results – predictions for the E12-20-013 experiment at JLab

- the rection: 208 Pb(e,e $^{\prime}$ K $^+$) $^{208}_{\Lambda}$ Tl
- the many-particle calculation: the Tamm-Dancoff Λ-nucleon particle-hole model
- the NN interaction: Daejeon16 with the phenomenological density dependent term
- the YNG interaction: Nijmegen-F and Jülich A with $k_F = 1.34$ fm
- Hall C kinematics: $E_\gamma {= 1.5}$ GeV, $Q^2 {= 0.0323}$ GeV 2 , $|\vec{P}_{\rm K}| {= 1.245}$ GeV, $\theta_{\rm K}{= 7.1^\circ}$, $\Phi_{\rm K}{= 180^\circ}$

 Ω

Results – predictions for the E12-15-008 experiment at JLab

- $-$ the rection: 40 Ca $(e,e'K^+)^{40}_{\Lambda}K$
- the many-particle calculation: the Tamm-Dancoff Λ-nucleon particle-hole model
- the NN interaction: chiral NNLO_{sat} NN+NNN as in Phys.Rev.C 108, 024615 (2023) and Daejeon 16 with the phenomenological density dependent term
- the YNG interaction: Nijmegen-F and Jülich A with $k_F = 1.30$ fm
- kinematics: $E_\gamma{=1.5}$ GeV, $Q^2{=0.0323}$ GeV 2 , $|\vec{P}_{\sf K}|{=1.245}$ GeV, $\theta_{\sf K}{=7.1}^{\circ}$, $\Phi_{\sf K}{=180}^{\circ}$
- BS3 amplitude in the optimum on-shell approximation

Results – predictions for the E12-15-008 experiment at JLab

- $-$ the rection: 48 Ca $(e,e'K^+)^{48}_{\Lambda}K$
- the many-particle calculation: the Tamm-Dancoff Λ-nucleon particle-hole model
- the NN interaction: chiral NNLO_{sat} NN+NNN as in Phys.Rev.C 108, 024615 (2023) and Daejeon 16 with the phenomenological density dependent term
- the YNG interaction: Nijmegen-F and Jülich A with $k_F = 1.34$ fm
- kinematics: $E_\gamma{=1.5}$ GeV, $Q^2{=0.0323}$ GeV 2 , $|\vec{P}_{\rm K}|{=1.245}$ GeV, $\theta_{\rm K}{=7.1}^{\circ}$, $\Phi_{\rm K}{=180}^{\circ}$

Summary

- **•** the effects from proton Fermi motion in electroproduction of hypernuclei depend on the elementary amplitude and kinematics and they are more apparent in the longitudinal parts of the cross section
- we have suggested using the optimum on-shell approximation that effectively accounts for the proton motion and improves agreement with the data
- **•** the shell-model approach with the effective YN interaction fitted to very precise data from the γ -ray spectroscopy provide reasonable description of spectra in electroproduction of p-shell (light) hypernuclei
- \bullet Tamm-Dancoff formalism with the chiral NNLO_{sat} NN+NNN potential and Daejeon 16 with the phenomenological DD term and various effective YN interactions (Nijmegen, Jülich) turn out to be a good tool in analysis of the data in electroproduction of medium $\binom{40}{\Lambda}$ K) and heavy $\binom{208}{\Lambda}$ TI) mass hypernuclei
- we provided predictions for the experiments in preparation at JLab
- **•** correct inclusion of kaon distortion is important as in given kinematics the distortion amounts to \approx 30–40% for light (p-shell) and \approx 50–90% for heavy hypernuclei K ロト K 御 ト K 君 ト K 君 K

Outlook

- include Coulomb interaction in the kaon FSI ($Z = 81$ for $\frac{208}{\Lambda}$ TI)
- a more ambitious project: develop analogous formalism for (π^+,\mathcal{K}^+) \bullet production and utilize consistent calculations of the many-particle part (OBDME)

4 D F

 200

Thank you for your attention!

不自下 ∢母 D.

Backup slide – factorization

• production amplitude in PWIA

$$
\mathcal{T}_j = Z \int d^3 \xi_\Lambda d^3 \xi_p e^{i B \vec{\Delta} \cdot \vec{\xi}_\Lambda} \operatorname{Tr} \int \frac{d^3 p_p}{(2\pi)^3} \exp \left[i \vec{p}_p \cdot (\vec{\xi}_\Lambda - \vec{\xi}_p) \right] \mathcal{J}_j(\vec{P}_K, \vec{P}_\gamma, \vec{p}_p)
$$

$$
\int d^3 \xi_1 \dots d^3 \xi_{A-2} \Phi_A(\vec{\xi}_1, \dots, \vec{\xi}_{A-2}, \vec{\xi}_p) \Phi_H^*(\vec{\xi}_1, \dots, \vec{\xi}_{A-2}, \vec{\xi}_\Lambda),
$$

with the momentum transfer $\vec\Delta = \vec P_\gamma - \vec P_K$, Jacobi coordinates $\vec\xi,$ a scaling parameter B and assuming translational invariance

$$
\langle \vec{P}_{\mathsf{K}} \vec{p}_{\mathsf{\Lambda}} | \hat{\mathbf{J}}_j | \vec{P}_{\gamma} \vec{p}_{\mathsf{p}} \rangle = (2\pi)^3 \, \delta^{(3)}(\vec{P}_{\mathsf{K}} + \vec{p}_{\mathsf{\Lambda}} - \vec{P}_{\gamma} - \vec{p}_{\mathsf{p}}) \, \mathcal{J}_j(\vec{P}_{\mathsf{K}}, \vec{P}_{\gamma}, \vec{p}_{\mathsf{p}}).
$$

– the amplitude is still averaged over the proton momentum \vec{p}_p . – the elementary amplitude \mathcal{J}_j is a matrix 2 \times 2 (in two-component CGLN-like formalism)

• elementary amplitude is factorized out of the integral replacing $\quad \mathcal{J}_{\mu}(\vec{P}_K,\vec{P}_\gamma,\vec{p}_p) \rightarrow \mathcal{J}_{\mu}(\vec{P}_K,\vec{P}_\gamma,\vec{p}_{\text{eff}})$ for some (unknown) effective proton momentum \vec{p}_{eff} .

 Ω

イロト イ押 トイヨ トイヨ トー

Backup slide – effective proton momentum

• another possibility how to fix p_{eff} is to use a mean value calculated from the mean kinetic energy of the proton in nucleus

$$
\langle T_{kin}\rangle = \frac{\langle p\rangle^2}{2\mu} \Rightarrow \langle p\rangle = \sqrt{2\mu \langle T_{kin}\rangle} = |\vec{p}_{eff}| \quad \text{where}
$$

$$
\langle \Psi_{Eijm} | T_{kin} | \Psi_{Eijm} \rangle = \int dr \, u_{Eij}^*(r) \left(-\frac{(\hbar c)^2}{2\mu} \right) \left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} \right] u_{Eij}(r)
$$

=
$$
\int dr \, | u_{Eij}(r) |^2 (E - \langle j/m | V | j/m \rangle)
$$

with the Woods-Saxon and Coulomb potentials: $V = WS_c + WS_{LS} + V_{coul}$ and the single-particle state: $\Psi_{E\!j\!j\!m}(\vec{r}\,) = \frac{u_{E\!j}(r)}{r}\,[\,\mathsf{Y}_{\mathsf{I}}(\hat{r}\,) \otimes \chi^{(\frac{1}{2})}\,]_{m}^{j}$

• for the 12 C target we get results:

Backup slide – off-shell effects

 \leftarrow \Box

 \equiv \rightarrow Þ