LHRS trigger efficiency

Hanjie Liu

Overview

- S0&S2 efficiency;
- S0 efficiency;
- S2 efficiency;
- Cherenkov detector efficiency;
- Trigger logic module efficiency;

S0&S2 efficiency

- (S0&S2) efficiency
- 1. Select good electron samples:
- TRK: one track;
- ACC: abs(L.gold.th)<0.04 && abs(L.gold.ph)<0.02 && (L.gold.dp)<0.035;

good electrons

• PID: Cherenkov sum && E/p

2. $s0\&s2 = \frac{good electrons with T2 fired}{good electrons with T3 fired}$

S0&S2 efficiency

s0&s2 efficiency

	kin1	kin2	kin3	kin5	kin7	kin9	kin11	kin13
s0&s2 eff	0.9972	0.9972	0.9972	0.9971	0.9970	0.9972	0.9973	0.9969

S0 efficiency

- S0 efficiency:
- 1. Good electrons samples:
- 2. S2 TDC sum:

T1: S0 & S2 T2: (S0 & S2) & Cer T3: (S0 || S2) & Cer

S0 efficiency

s0 efficiency

	kin1	kin2	kin3	kin5	kin7	kin9	kin11	kin13
s0 eff	0.9972	0.9974	0.9973	0.9972	0.9971	0.9973	0.9973	0.9969

S2 efficiency

- S2 efficiency:
- 1. Good electrons samples:

T1: S0 & S2 T2: (S0 & S2) & Cer T3: (S0 || S2) & Cer

- Cherenkov detector efficiency:
- 1. Select good electron samples without Cherenkov cut:
- TRK: one track;
- ACC: abs(L.gold.th)<0.04 && abs(L.gold.ph)<0.02 && (L.gold.dp)<0.035; E/p
- E/p

2. $\operatorname{cer_dec} = \frac{\operatorname{good} \operatorname{electrons} \operatorname{with} T2 \operatorname{cut}}{\operatorname{good} \operatorname{electrons} \operatorname{with} T1 \operatorname{cut}}$

Cherenkov detector efficiency

Not sure if it's Cherenkov detector inefficiency or contamination

	kin1	kin2	kin3	kin5	kin7	kin9	kin11	kin13
cer eff	0.9726	0.9747	0.9752	0.9807	0.9838	0.9844	0.9847	0.9822

Cer eff (without central track cut): 0.98072+0.0002 Cer effe (with central track cut): 0.980948+0.0003

Cherenkov detector efficiency

E/p

pion: TRK, ACC, T1 only, CK<100; electrons: TRK, ACC, T2, CK>4000;

With E/p>0.95:

	kin1	kin2	kin3	kin5	kin7	kin9	kin11	kin13
π/e	0.0295	0.0257	0.0274	0.0180	0.0133	0.0127	0.0095	0.0084
error	0.0007	0.0007	0.0010	0.0005	0.0005	0.0007	0.0006	0.0007

assume Cherenkov 100% efficiency to electrons

(s0&s2)&Cer Logical module Efficiency

- 1. Select good electron samples with Cer sum cut;
- 2. $\operatorname{cer_log} = \frac{\operatorname{good} \operatorname{electrons} \operatorname{with} \operatorname{CerADC} \operatorname{cut} \operatorname{with} \operatorname{T2} \operatorname{cut}}{\operatorname{good} \operatorname{electrons} \operatorname{with} \operatorname{CerADC} \operatorname{cut} \operatorname{with} \operatorname{T1} \operatorname{cut}}$

- (S0&S2), S0, S2 efficiency are all above 99% for all kinematics;
- Cherenkov detector efficiency is around 99% for high kinematics;
- Cherenkov detector inefficiency is highly because of contamination rather than real detector inefficiency;