Fall Optics Runplan

Shujie, 09.2018

Options: 2nd pass

- Pro:
- High rates (need <1 hour at 15 degree, $<$ 1 minutes at 13 degree)
- No pass change required
- Can take Hydrogen elastic at 13 degree (with rastered beam. rate will be crazy)
- Con:
- Scattering chamber flange block acceptance
- Need to request survey (only 17 degree surveyed now)
- Possible beam steering by Q1 magnetic field
- Pro:
- LHRS at 17 dgree already and surveyed
- Nothing will block the acceptance
- Larger target y coverage
- Similar setting as in the spring, everything well understood
- Con:
- Need to go higher pass
- Slower (3 hours per setting)

Simulation: 2nd pass beam, LHRS 13 degree

c1x:c1y \{rate\}

c1x:c1y \{rate\}

c1x:c1y \{rate\}

c1x:c1y \{rate\}
${ }^{8}{ }^{10}{ }^{10}{ }^{6}$ foil at ztar $=12.5 \mathrm{~cm}$

Simulation: 2nd pass beam, LHRS 15 degree

c1x:c1y \{rate\}

c1x:c1y \{rate\}

c1x:c1y \{rate\}

c1x:c1y \{rate\}

Q1 Saturation Study with Marathon Optics Data

- Why:
- We need to decide which Q1 curent to use for our production run considering the Q1 saturation effect.
- While the solid angle and y tar can be re-calibrated with sieve runs, we may not get Hydrogen elastic data at the exact production momentum to calibrate delta (unless we wish to go 13 degree)
- How:
- In the spring we took single TI foil sieve data with various Q1 current setting
- The existing GMp optics should work with the $\mathrm{p} 0=2.5 \mathrm{GeV} / \mathrm{c}$ sieve data perfectly
- A weaker Q1 will have aweaker focus on vertical direction \Rightarrow larger span of vertical sieve pattern
- Goal:
- Find the best Q1 setting so that the existing optics can reproduce the same sieve pattern at a saturated momentum setting

Q1 Saturation Study with Marathon Optics Data

sieve x

target y vs ph

Q1 Saturation Study with Marathon Optics Data

p0	Q1 current	regulator	run number	peak diff	Peak diff/0.118
2.5	521.468	on	2378	0.118	1
3.82	819.7	off	2363	0.128	1.085
3.82	830.6	off	2362	0.126	1.068
3.82	838.87	on	2361	0.125	1.059
3.82	847.4	off	2360	0.123	1.042
3.93	843.3	off	2381	0.12729	1.078

Least-squares best fit:
$-8.63429 \times 10^{-6} x^{2}+0.0129067 x-3.69389$
Fit diagnostics:

AIC	BIC	R^{2}	adjusted R^{2}
-30.4564	-32.9112	0.991134	0.973402

Plot of the least-squares fit:
 the same shape but a different constant term)

linear fitting:

$Y=2.30225-0.00148502 x$
$\Rightarrow Q 1=876.9 \mathrm{~A}$ at $3.82 \mathrm{GeV} / \mathrm{c}$
896.3 A at $3.93 \mathrm{GeV} / \mathrm{c}$ (same shape fit)

> Plot of the residuals:

