Fall Optics Runplan

Shujie, 09.2018

Options: 2nd pass v.s.

• Pro:

- High rates (need <1 hour at 15 degree, <
 1 minutes at 13 degree)
- $\circ \quad \text{No pass change required} \\$
- Can take Hydrogen elastic at 13 degree (with rastered beam. rate will be crazy)

• Con:

- Scattering chamber flange block acceptance
- Need to request survey (only 17 degree surveyed now)
- Possible beam steering by Q1 magnetic field

Higher pass

• Pro:

- LHRS at 17 dgree already and surveyed
- Nothing will block the acceptance
- Larger target y coverage
- Similar setting as in the spring, everything well understood
- Con:
 - Need to go higher pass
 - Slower (3 hours per setting)

Simulation: 2nd pass beam, LHRS 13 degree

Simulation: 2nd pass beam, LHRS 15 degree

Q1 Saturation Study with Marathon Optics Data

• Why:

- We need to decide which Q1 curent to use for our production run considering the Q1 saturation effect.
- While the solid angle and y tar can be re-calibrated with sieve runs, we may not get Hydrogen elastic data at the exact production momentum to calibrate delta (unless we wish to go 13 degree)
- How:
 - In the spring we took single TI foil sieve data with various Q1 current setting
 - The existing GMp optics should work with the p0=2.5 GeV/c sieve data perfectly
 - A weaker Q1 will have aweaker focus on vertical direction ⇒ larger span of vertical sieve pattern
- Goal:
 - Find the best Q1 setting so that the existing optics can reproduce the same sieve pattern at a saturated momentum setting

Q1 Saturation Study with Marathon Optics Data

0.06

Run 2360

target y vs ph

0.02 0.04 0.06

0

0.08 0.1

201

-0.1

-0.08 -0.06 -0.04 -0.02

Q1 Saturation Study with Marathon Optics Data

p0	Q1 current	regulator	run number	peak diff	Peak diff/0.118
•					
2.5	521.468	on	2378	0.118	1
3.82	819.7	off	2363	0.128	1.085
3.82	830.6	off	2362	0.126	1.068
3.82	838.87	on	2361	0.125	1.059
3.82	847.4	off	2360	0.123	1.042
3.93	843.3	off	2381	0.12729	1.078

quadratic fitting:

Y = -8.63429×10[^]-6 x² + 0.0129067 x - 3.69389 ⇒ Q1 = 869.8 A at 3.82 GeV/c

882.8 A at 3.93 GeV/c (assume the fit has the same shape but a different constant term)

linear fitting:

Y = 2.30225 - 0.00148502 x ⇒ Q1 = 876.9 A at 3.82 GeV/c 896.3 A at 3.93 GeV/c (same shape fit)

fit	data	{(819.7, 1.084745763), (830.6, 1.06779661), (838.8, 1.059322034), (847.4, 1.042372881))		
	model	polynomial of degree 2 or less		

Least-squares best fit:

$-8.63429 \times 10^{-6} x^{2} + 0.0129067 x - 3.69389$

Fit diagnostics:

AIC	BIC	R^2	adjusted R^2
-30.4564	-32.9112	0.991134	0.973402

Plot of the residuals:

