PRC and JPS-DNP joint symposium at 2021 fall JPS meeting

Hypernuclear Physics at Jefferson Laboratory

> Kyoto University, Japan Toshiyuki Gogami

> > Sep 17, 2021

1. Introduction

2. Experiments

- Test of the charge symmetry breaking for p-shell hypernuclei
- *nn*A search (2018)
- Future projects

3. Summary

STUDY ON BARYON INTERACTION (BB INT.)

Nuclear Sector (NN)

- Rich data of scattering experiment
- Nuclear data > 3000

Strangeness Sector (ΛΝ, ΣΝ, ΞΝ etc.)

Scarce data of scattering experiment
Hypernuclear data ~ only 40 !!

HOW TO INVESTIGAE THE BB INTERACTION

Method A

Data

- Scattering experiment
- (hyper)nuclear spectroscopy
- Phemtoscopy (ALICE, PRL123, 112002 (2019))

Phenomenological Theories

- Meson exchange model
- Effective field theory
- Quark cluster model etc.

 π etc, N

Method **B**

Lattice QCD (First principle calc.)

H. Yukawa (Kyoto Univ.) Novel Prize 1949

N

HYPERONS IN NATURE

Astronomical observation

Strange Hadrons?
Quark matter?
Meson condensate?

<u>Hyperons make a NS softer</u> → $\geq 2M_{\odot}$ is hard to support by only 2BF → Multi body repulsive forces may play a role

More precise studies on the strange BB/BBB interactions are needed

Typical options for hypernuclear measurement

Production measurement

Missing mass spectroscopy ✓ (π⁺,K⁺) @J-PARC ✓ (K⁻,π⁻) @J-PARC ✓ (e,e'K⁺) @JLab

Decay particle measurements

- Emulsion @J-PARC
- Invariant mass spectroscopy @GSI
- γ-ray spectroscopy @ J-PARC
- Decay π spectroscopy @MAMI
- (femtoscopy @CERN)

Mass, Lifetime, decay mechanism

DRAWBACK AND ADVANTAGE

Hypernuclei from ¹²C

 $(e, e'K^+)$

- High resolution (< 1 MeV) \odot
- Production of mirror nuclei \bigcirc
- Large spin flip amplitude Δ
- Very small cross section ×
- Huge EM backgrounds ×
- e' and K^+ coincidence ×

TG et al., Nucl. Instrum Methods. Phys. A 900, 69-83 (2018)

CEBAF AT JEFFERSON LAB

Continuous electron beam facility (CEBAF)

- ✓ 12 GeV at maximum
- \checkmark 100 µA (> 600 THz)
- \checkmark 2 or 4-ns interval bunches
- ✓ Emittance of 2 µm•mrad
- ✓ Energy spread ($^{\Delta E}/_E < 5 \times 10^{-5}$ rms)

Experimental setup

TG et al., Nucl. Instrum Methods. Phys. A 729, 816—824 (2013)
 Y. Fujii et al., Nucl. Instrum Methods. Phys. A 795, 351—363 (2015)

✓ High resolution✓ High accuracy

CHARGE SYMMETRY BREAKING (CSB)

*1) T. O. Yamamoto *et al.*(J-PARC E13 Collaboration),
Phys. Rev. Lett. 115, 222501 (2015)
*2) A. Esser *et al.* (A1 Collaboration),
Phys. Rev. Lett. 114, 232501 (2015).

*1) J.H.E.Mattauch *et al.*, *Nucl. Pys.* 67, 1 (1965).
*2) R.A.Brandenburg, S.A.Coon *et al.*, *NPA*294, 305 (1978).

Five times larger effectSpin dependent

ΛΝ-ΣΝ COUPLING

A. Gal, Phys. Lett. B 744, 352 (2015)

 $\langle N\Lambda | V_{CSB} | N\Lambda \rangle = -0.0297 \tau_{NZ} \frac{1}{\sqrt{3}} \langle N\Sigma | V_{CS} | N\Lambda \rangle$

 $\Delta E(\overline{0+}) = 266 \text{ keV}$ $\Delta E(1+) = 39 \text{ keV}$

AN-EN COUPLING

A. Gal, Phys. Lett. B 744, 352 (2015) What about other systems such as the p-shell region $U_{V,T}(X) = -0.0297 \tau_{NZ} \frac{1}{\sqrt{3}} \langle N\Sigma | V_{CS} | NA \rangle$ Σ^{0}

p-shell \rightarrow matrix elements are smaller compared to those for s-shell by a factor of 2 (The matrix elements are determined to reproduce γ -ray transition energies; D.J. Millener, Nucl. Phys. A 881, 298—309 (2012))

Charge symmetry breaking (CSB) in the p-Shell hypernuclei

A. Gal et al., J. Phys.: Conf. Ser. 966 012006 (2018)

Expected difference

Charge symmetry breaking (CSB) in the p-Shell hypernuclei

RESULTS

E. Botta, AIP Conference Proceedings 2130, 030003 (2019)

- CSB seems to be small in p-shell when counting experiments' data are used
- Double check is awaited for emulsion data \rightarrow J-PARC E07 (data were taken)

BASIC INFORMATION FOR THE AN CSB STUDY: ${}^{4}_{\Lambda}\text{He} - {}^{4}_{\Lambda}\text{H}$

Explicit inclusion of Σ

A. Gal, Phys. Lett. B 744, 352 (2015)

$$\frac{\Lambda}{V_{\Lambda N-\Sigma N}} \underbrace{\begin{array}{c} \Sigma^{0} & \Lambda \\ \delta M \\ \delta M \end{array}}_{N}$$

$$\langle N\Lambda | V_{CSB} | N\Lambda \rangle = -0.0297 \tau_{NZ} \frac{1}{\sqrt{3}} \langle N\Sigma | V_{CS} | N\Lambda \rangle$$

Phenomenological potential

E. Hiyama et al., Phys. Rev. C 80, 054321 (2009).M. Isaka et al., Phys. Rev. C 101, 024301 (2020).

$$\begin{split} V_{\Lambda N}^{\text{CSB}}(r) &= -\frac{\tau_z}{2} \Big[\frac{1+P_r}{2} \Big(v_0^{\text{even},\text{CSB}} + \sigma_{\Lambda} \cdot \sigma_{\mathbf{N}} v_{\sigma_{\Lambda} \cdot \sigma_{N}}^{\text{even},\text{CSB}} \Big) e^{-\beta_{\text{even}}r^2} \\ &+ \frac{1-P_r}{2} \Big(v_0^{\text{odd},\text{CSB}} + \sigma_{\Lambda} \cdot \sigma_{\mathbf{N}} v_{\sigma_{\Lambda} \cdot \sigma_{N}}^{\text{odd},\text{CSB}} \Big) e^{-\beta_{\text{odd}}r^2} \Big] \end{split}$$

Basic Input JLab $\Rightarrow B_{\Lambda}(^{4}_{\Lambda}H; 1^{+})$ A=4 A=4 A=4 A=4 A=4 A=5 A=7 A=7 A=7 A=7 A=7 A=7 A=7 A=9 A=7 A=10 BXS, PRC 103, L041301 (2021) A=10 BXS, PRC 90, 034320 (2014) ...

nnΛ search experiment at JLab (E12-17-003)

C. Rappold et al. (HypHI Collaboration), Phys. Rev. C 88, 041001(R) (2013).

³H(e, e'K⁺)*nn*Λ with HRSs E12-17-003 (Oct 30—Nov 25, 2018)

bound

uuV5

Missing mass measurement has sensitivity to both bound and resonant states

CAN THE NNA BE BOUND?

E. Hiyama, S. Ohnishi, B.F. Gibson, and Th. A. Rijken, Physical Review C 89, 061302(R) (2014).

AV8 NN + NSC97f YN potentials

(a)
$${}^{3}V_{\Lambda N-\Sigma N}^{T} \times 1.0$$

(b) ${}^{3}V_{\Lambda N-\Sigma N}^{T} \times 1.1$
(c) ${}^{3}V_{\Lambda N-\Sigma N}^{T} \times 1.2$

Tensor component of the $\Lambda N-\Sigma N$ coupling was varied. \rightarrow No solution was found to make the $nn\Lambda$ bound maintaining the consistency with the ${}^{3}_{\Lambda}H({}^{4}_{\Lambda}H, {}^{4}_{\Lambda}He)$ data.

EXPERIMENTAL SETUP (JLAB E12-17-003)

Timing consistency between L and R assuming m_k

Coin time (ns)

39

1.

5.

Energy calibration by Λ and Σ

Inside of scattering chamber

H(e,e'K⁺) Λ , Σ^0

System worked as we designed

CROSS SECTION ANALYSIS

Acceptance cut → Lower statistics

2. Systematic error in addition to statistical error

Other ongoing analyses:

- A) Peak search with higher statistics
- B) An FSI fom QF shape

Theoretical calculations are needed !

FIT RESULT (PRELIMINARY)

Test case1: narrow width $\Gamma = 0.8$ MeV K.M.Kamada et al., EPJ Conf. 113, 07004 (2016)

Test case2: wide width $\Gamma = 4.7$ MeV V.B. Belyaev et al., NPA 803, 210 (2008)

da/dΩ (nb/sr)

/dΩ (nb/sr)

Unbinned maximum likelihood fitting → Cross section PRELIMINARY

Wide width

Future programs being prepared

^{3,4}_ΛH (E12-19-002) → lifetime puzzle, CSB, 3/2⁺
 ^{40,48}_ΛK (E12-15-008) → Isospin dependence
 ²⁰⁸_ΛTI (E12-20-013) → NNΛ interaction

Very high accuracy $\Delta B^{\text{total}}{}_{\Lambda} = \pm 60 \text{ keV}$

SUMMARY

1. Hypernuclear study by (e,e' K⁺)

• High resolution (0.5–1 MeV FWHM) / High accuracy

2. Project introduced

- Test of the charge symmetry breaking for p-shell hypernuclei \rightarrow Small
- $nn\Lambda$ search (2018) \rightarrow in analysis
- Future projects (2023, 24~)
 - $^{3,4}_{\Lambda}$ H (E12-19-002) \rightarrow lifetime puzzle / 3/2⁺ existence for hypertriton, CSB
 - ${}^{40,48}_{\Lambda}$ K (E12-15-008) \rightarrow Isospin dependence
 - $^{208}_{\Lambda}$ Tl (E12-20-013) \rightarrow NNA interaction

THANK YOU FOR ATTENTION