PID for pass2

Tong Su

Regular Way to Check PID

- •2 PID detectors : Cherenkov and Calorimeter
- •Both PID detectors should be more sensitive to electron compare with pion
- Select a pure electron /pion sample from one of the detectors and check the performance in the other one

MARATHON PID difficulty

KIN1

KIN15

A Compromised Solution

 More than one kind of "particles" can introduce active the Cherenkov

	Cherenkov	Calorimeter
Electron	Х	\checkmark
X1	Х	difficult
X2	Х	difficult

• Treat X1 and X2 as no-electron

	Cherenkov	Calorimeter
electrons	Х	\checkmark
Non-electrons	Х	\checkmark

A Compromised Solution

- $\begin{cases} P_x^A: \text{Probality for non} \text{electron pass cer cut} \\ P_e^A: \text{Probality for electron pass cer cut} \\ P_x^B: \text{Probality for non} \text{electron pass ep cut} \\ P_e^B: \text{Probality for electron pass ep cut} \end{cases}$
- Since clean sample can be selected from Calorimeter, so P^A_x P^A_e can be calculated
- *x: number of non-electrons*
- e: number of electrons
- *N_i*: number of events with different cuts

Cut A	Cut B	Relations *		
Х	Х	$x + e = N_0$		_
~	Х	$P_x^A x + P_e^A e = N_1$	4	l equ
Х	✓	$P_x^B x + P_e^B e = N_2$	J	
\checkmark	~	$P_x^A P_x^B x + P_e^A P_e^B e = N_4$		

4 equations to solve 4 Variables

* General Good Electron Cut has been applied

A Compromised Solution

- *x: number of non-electrons*
- e: number of electrons
- *N_i*: number of events with different cuts

Cut A	Cut B	Relations *	4 equations to solve 4 Variables
Х	Х	$x + e = N_0$	
~	Х	$P_x^A x + P_e^A e = N_1$	
Х	v	$P_x^B x + P_e^B e = N_2$	
~	\checkmark	$P_x^A P_x^B x + P_e^A P_e^B e = N_4$	

* General Good Electron Cut has been applied

Blue Marker: Helium-3 Red Marker: Tritium

True_electron=e*Pae*Pbe False_electron=x*Pax*Pbx X Contamination=False_electron/True_electron

x/e under T2 trigger

x/e under T1 trigger

Some other update for pass2

- Pass2 update:
 - LHRS Optics (Jason)
 - Raster/ Eloss (Tyler & Rey)
 - New PRL calibration (Mike)
- All the pass1 analysis repeated to the pass2 data
 - Positron/ECC
 - Cross section ratio
- Statistic increase around 2% for LHRS data and literally nothing else change so far