

<u>Study of the Λn final state interaction</u> <u>from ³H(e, e'K⁺)X spectroscopy</u>

K. Itabashi for the JLab Hypernuclear Collaboration

Contents

- Physics motivation
- Experimental setup
- Missing mass spectrum in the ${}^{3}H(e, e'K^{+})X$ reaction
 - Study of the Λn final state interaction

The nnΛ state problem

Experimental suggestion

HypHI Collaboration at GSI reported structure that may be interpreted

as a bound state of $nn\Lambda$ system.

C. Rappold *et al.,* (HypHI Collaboration) Phys. Rev. C 88 041001 (2013)

Theoretical suggestion

- Theoretical calculation with Gaussian expansion method Ref.) E. Hiyama et al., Phys. Rev. C 89, 061302 (2014). Bound state of the $nn\Lambda$ is not realistic
 - Faddeev calculation with S-wave separable potentials Ref.) I.R. Afnan et al., Phys. Rev. C, 92 054608 (2015). $nn\Lambda$ could be resonance state when <u>a Λn potential is 5% deeper</u>

than Λp potential (s > 1.05).

Existence of the $nn\Lambda$ is not established at all \rightarrow Need more precise spectroscopy measurement

HIEI2022

<u>A hypernucler experiment in the $(e, e'K^+)$ reaction</u>

 $(e, e'K^+)$ reaction

 $(e \rightarrow e' + \gamma^*)$ to produce Λ in the nucleus. The missing mass of Λ hypernuclei is

$$M_X = \sqrt{(E_e + m_T - E_{e'} - E_K)^2 - (\overrightarrow{p_e} - \overrightarrow{p_{e'}} - \overrightarrow{p_K})^2}$$

e e' kt

 $^{A}Z(e,e'K^{+})^{A}_{\Lambda}(Z-1)$

An experiment in the $(e, e'K^+)$ reaction can achievable high energy resolution (a few MeV FWHM) and precision (a few hundreds keV) due to use

- primary beam with small beam energy spread
- energy calibration with known mases of Λ and Σ^0 in the $p(e, e'K^+)\Lambda/\Sigma^0$ reaction

To search for $nn\Lambda$ with high energy resolution and precision,

we performed $nn\Lambda$ experiment at JLab with the ${}^{3}H(e, e'K^{+})X$ reaction.

HIEI2022

nnA search experiment (E12-17-003) at JLab

The $nn\Lambda$ search experiment (E12-17-003) was performed at JLab in 2018.

• Two high resolution spectrometers (HRSs) $(\Delta p/p \sim 2.0 \times 10^{-4})$

• Tritium gas target (84.8 mg/cm²)

The missing mass of the $nn\Lambda$ was obtained by measuring momenta of K^+ and e' with the HRSs $M_X = \sqrt{(E_e + m_T - E_{e'} - E_K)^2 - (\overrightarrow{p_e} - \overrightarrow{p_{e'}} - \overrightarrow{p_K})^2}$ **Electron beam** $p_{e\prime} = 2.2 \text{ GeV}/c$ $\theta_{ee\prime} = 13.2^{\circ}$ $E_e = 4.3 \text{ GeV}$ $I_e = 22.5 \, \mu A$ $nn\Lambda$ Target ³H $p_{K} = 1.8 \, \text{GeV} / c$ ³H($e, e'K^+$) $nn\Lambda$ reaction $\theta_{eK} = 13.2^{\circ}$

HIEI2022

Missing mass spectrum in the ${}^{3}H(e, e'K^{+})X$

Distribution of the Λ -QF production was estimated by Monte Carlo simulation (SIMC)

³H(e, e'K⁺)X spectrum

HIE12022

The MC distribution was generated by SIMC with physics effects as

- Fermi momentum of proton in ³H Ref.) R. B. Wiringa Phys. Rev. C 43, 1585 (1991).
- Kaon decay effect
- Radiative effects

From missing mass spectrum in the ${}^{3}H(e, e'K^{+})X$ reaction,

the following physics have been studied

Upper limit of the $nn\Lambda$ from an event excess $(-B_{\Lambda} \sim 0 \text{ MeV})$ Ref.) K.N. Suzuki *et al.*, Prog. of Theo. and Exp. Phys, 2022, 013D01 (2022).

2. Λn final state interaction from the Λ -QF spectrum ($0 \le -B_{\Lambda} \le 60 \text{ MeV}$)

Previous study of Final State Interaction (FSI)

The recoil Λ interacts with a nucleon within a target system (ΛN scattering)

HIEI2022

Calculation of An final state interaction

 Λn final state interaction (FSI) : The recoil Λ interacts with a neutron within nn system. FSI can be written with influence factor $I(k_{rel})$ as following

March 22nd, 2022

8

Neutron momentum calculation

•

Stopped tritium target $\rightarrow \vec{p}_p + \vec{p}_{n1} + \vec{p}_{n2} = 0$

Relative momentum was defined as $\vec{p}_{rel} = \frac{M_n \vec{p}_{n1} - M_n \vec{p}_{n2}}{2M_n}$

 $\vec{p}_{n1(n2)} = -\frac{1}{2} \, \vec{p}_p + \vec{p}_{rel}$

$$\left|\vec{p}_{n1(n2)}\right| = \sqrt{\left|\vec{p}_{rel}\right|^2 + \frac{\left|\vec{p}_p\right|^2}{4}} \mp \left|\vec{p}_p\right| \left|\vec{p}_{rel}\right| \cos\theta$$

 $\boldsymbol{\theta} :$ angle between proton and relative momentum

Proton momentum (p_p) : Fermi momentum distribution Ref.) R. B. Wiringa Phys. Rev. C 43, 1585 (1991).

- Angle between $ec{p}_p$ and $ec{p}_{rel}\left(heta
 ight)$: Assuming spherical uniform distribution
- Relative momentum (\vec{p}_{rel}) : Given by an excited energy of nn system (E_{nn}^*)

 E_{nn}^* was estimated by spectral function of ${}^{3}\mathrm{H}$ Ref.) C. Ciofi degli Atti et al., Phys. Rev. C, 21 (1980).

March 22nd, 2022

9

Calculation of the An final state interaction

HIEI2022

 $nn\Lambda$ peak ($-B_{\Lambda} \sim 0$ MeV):

Breit-Wigner with $(-B_{\Lambda}, \Gamma) = (0.55, 4.7)$ MeV Ref.) K.N. Suzuki *et al.*, Prog. of Theo. and Exp. Phys, 2022, 013D01 (2022). Scaling factors $(w_{FSI}, w_{nn\Lambda})$ were determined by chi-square $(0 \le -B_{\Lambda} \le 60 \text{ MeV})$. $\chi^{2} = \sum_{i}^{N_{\text{bin}}} \frac{(y_{\text{data}}^{i} - w_{FSI} \cdot y_{FSI}^{i} + w_{nn\Lambda} \cdot y_{nn\Lambda}^{i})^{2}}{\sigma_{\text{data}}^{i}}$

With FSI : Succeeded in producing a structure ($0 \le -B_{\Lambda} \le 60 \text{ MeV}$)

Model difference : Small

Not enough statistic to identify the model

March 22nd, 2022

10

Search for best (a, r) parameters with chi-square

 Λn FSI : calculated by Jost function with the (a, r) potential parameters

• Search for the best (a, r) parameters by changing them

There are four
$$\Lambda n$$
 potential parameters (a_s, r_s, a_t, r_t)
 $\left(\frac{d\sigma}{d\Omega}\right)_{\text{FSI}} = \left(\left|\frac{1}{J_s(k_{\text{rel}})}\right|^2 + 3\left|\frac{1}{J_t(k_{\text{rel}})}\right|^2\right) \left(\frac{d\sigma}{d\Omega}\right)_{\text{w/o FSI}}$

In this study, two potential parameters (a_{\min}, r_{\min}) were used (mixed spin state of a and r)

 $\left(\frac{d\sigma}{d\Omega}\right)_{\rm FSI} = \left(\left|\frac{1}{|\mathbf{J}_{\rm mix}(\mathbf{k}_{\rm rel})|^2}\right) \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o \ FSI}$

Assuming $a_{mix} = -2.6$ fm (Preliminary) $r_{mix} = 5.0^{+1.3}_{-1.2}$ (stat.) fm

 (a_{\min}, r_{\min}) is not directly comparable with the theoretical models. \rightarrow I will consult with theorists and give restriction on the Λn potential parameters (a_s, r_s, a_t, r_t) in this study.

March 22nd, 2022

Conclusion

Study of the Λn potential dependence (preliminary)

- Fitting by chi-square $(0 \le -B_{\Lambda} \le 60 \text{ MeV})$
- NSC97f is the smallest chi-square in seven potential models

Λn Potential	Reduced chi-square (χ^2/ndf)	
w/o FSI (w/o nnL peak)	1.24	
w/o FSI	1.09	And the second states of the s
Jülich A	1.40	
Jülich B	1.15	RALIMIN 2 RV
NSC97f	1.05	
NLO13(600)	1.16	
NLO13(650)	1.17	(2) '에서 전 · · · 후손 · 오이라 · · · · · · · · · · · · · · · · · · ·
NLO19(600)	1.22	
NLO19(650)	1.22	

Search for the best fit of Λn FSI (preliminary)

- Minimum chi-square ($\chi^2 = 59$) at (-2.6, 5.0) fm
- $a_{\rm mix} = -2.6$ fm is comparable with the Λn potential models
- The effective range (r_{mix}) can be limited for a given a_{mix} .

 (a_{\min}, r_{\min}) is not directly comparable with the theoretical models. \rightarrow I will consult with theorists and give restriction on the Λn potential parameters (a_s, r_s, a_t, r_t) in this study.

HIEI2022

SUMMARY

- The information of the ΛN interaction can be obtained by Λ hypernuclear spectroscopy.
- The $nn\Lambda$ search experiment was performed in 2018 at JLab.
- Λn FSI was studied by fitting the Λ -QF distribution in the ${}^{3}H(e, e'K^{+})X$ reaction.
 - Λn FSI was calculated with Jost function in the ERA
 - NSC97f got smallest chi-square in the seven potential models
 - The effective range (r_{mix}) were limited for a given a_{mix} .
 - Assuming a = -2.6 fm, the effective range was obtained as $r_{mix} = 5.0^{+1.3}_{-1.2}$ (stat.) fm (preliminary)

Monte Carlo Simulation (SIMC)

Distribution of the Λ -QF production was estimated by Monte Carlo simulation (SIMC)

The MC distribution was generated by SIMC with physics effects as

- Fermi momentum of proton in ³H
 - Ref.) R. B. Wiringa Phys. Rev. C 43, 1585 (1991).

15

- Kaon decay effect
- Radiative effects
- $60 < -B_{\Lambda} < 150 \text{ MeV}$: Good agreement with data $0 < -B_{\Lambda} < 60 \text{ MeV}$: There are events excesses $\rightarrow \Lambda n$ FSI effect

March 22nd, 2022

Study of the ΛN interaction from Λ hypernuclei

- In the Λ hypernuclear spectroscopy experiment, missing mass of Λ hypernuclei and Λ quasi-free (Λ -QF) productions would be measured.
- JLab experiment (E91-016) with $(e, e'K^+)$ reaction
- there were excess events $(2.99 < M_X < 3.05 \text{ GeV})$.
- Black dot points : Experimental data
- magenta histogram : Λ-QF distribution (simulation)

ΛN final state interaction (FSI) → Successfully reproduced the excess events

16

March 22nd, 2022

Study of Final State Interaction (FSI)

The recoil Λ interacts with a nucleon within a target system (ΛN scattering)

HIEI2022

Missing mass spectrum in the ³H(e, e'K⁺)X

The differential cross section of $\Lambda - QF$ production calculation was calculated by $\overline{\left(\frac{d\sigma_{QF}}{d\Omega_{K}}\right)} = \frac{1}{N_{T}} \frac{1}{N_{\gamma^{*}}} \frac{1}{\varepsilon_{det}} \sum_{i}^{N_{QF}} \frac{1}{\varepsilon_{K}^{i}(\vec{p}_{K}^{i})d\Omega_{K}(\vec{p}_{K}^{i})}$

HIEI2022

From missing mass spectrum in the ${}^{3}H(e, e'K^{+})X$ reaction,

the following physics have been studied

Upper limit of the $nn\Lambda$ from an event excess $(-B_{\Lambda} \sim 0 \text{ MeV})$ Ref.) K.N. Suzuki *et al.*, Prog. of Theo. and Exp. Phys, 2022, 013D01 (2022).

2. Λn final state interaction from the Λ -QF spectrum ($0 \le -B_{\Lambda} \le 60 \text{ MeV}$)

March 22nd, 2022

18

The nnA state problem

19

A $nn\Lambda$ is a neutron- Λ system with no charge.

 \rightarrow Existence of $nn\Lambda$ is not established at all.

HypHI Collaboration at GSI reported structure that may be interpreted as a bound state of $nn\Lambda$ system.

Experimental data(GSI)

- Invariant mass : $m_{nn\Lambda}$ =2994.3±1.1(stat.)±2.2(sys.) MeV/ c^2
- Lifetime : $\tau_{nn\Lambda} = 190^{+47}_{-35}$ (stat.) ± 36(sys.) ps

 \rightarrow Peak events imply bound state of the $nn\Lambda$

However, GSI did not measure enough significance.

C. Rappold et al., (HypHI Collaboration) Phys. Rev. C 88 041001 (2013)

HIEI2022

nn state problem (theoretical discussion)

HypHI collaboration measured the events which indicate bound state of $nn\Lambda$.

However, theoretical calculations cannot reproduce bound state of $nn\Lambda$.

Theoretical calculation with Gaussian expansion method

 $\Lambda N \text{ interaction : NSC97f model including } \Lambda N - \Sigma N \text{ coupling effect} \qquad \text{E. Hiyama et al., Phys. Rev. C 89, 061302 (2014).}$ The binding energies in ${}^{3,4}_{\Lambda}\text{H}$ and ${}^{4}_{\Lambda}\text{He}$ are reproduced $\overbrace{(ii)}^{3}V^{T}_{N\Lambda-N\Sigma} \times 1.20 \qquad -B_{\Lambda} \text{ [MeV]}$

if ${}^{3}V_{N\Lambda-N\Sigma}^{T}$ parameter increase 20%, $nn\Lambda$ will be bound, but ${}^{3}_{\Lambda}$ H will be over bound \rightarrow The bound state of $nn\Lambda$ is unrealistic

HIE12022

$$nn + \Lambda \quad \text{unbound} \quad \frac{1/2^{+}}{-0.054} \quad \frac{1/2^{+}}{\pm 0.05} \quad \frac{1/2^{+}}{-0.19} \quad \frac{1/2^{+}}{-0.43}$$
(i) (ii) Exp. (i) (ii) $\frac{3}{\Lambda}$ H

20

nnA state problem (theoretical discusion)

Faddeev calculation with S-wave separable potentials suggested that $nn\Lambda$ could be resonance state

when a Λn potential is 5% deeper than Λp potential (s > 1.05).

s = 1 assuming charge symmetry $(V_{\Lambda n} = 1.0 \times V_{\Lambda p})$ Λp interaction has uncertainly

The $nn\Lambda$ is expected to be resonance state ($\Delta s > 0.05$) within the experimental error.

March 22nd, 2022

21

I.R. Afnan et al., Phys. Rev. C, 92 054608 (2015).

Spectral function of ³He

One of the nucleon momentum in ${}^{3}H$ was calculated with spectral function (SF)

However, spectral function of ³H could not reproduced

 \rightarrow Using SF of ³He assuming charge symmetry

Mirror system

³H

 E_{vv}^*

HIE12022

3H The relative momentum was written by the excited energy of residual system $E_{pp}^{*} = \frac{|\vec{p}_{rel}|^2}{2u} = \frac{|\vec{p}_{rel}|^2}{m_n}$ E_{nn}^* The proton momentum in ³He $\left|\vec{p}_{p}^{3\text{He}}\right| = \left|m_{p}E_{pp}^{*} + \frac{|\vec{p}_{n}|^{2}}{4} \mp |\vec{p}_{n}|(m_{p}E_{pp}^{*})\cos\theta\right|$ $\left|\vec{p}_{n}^{3H}\right| = \sqrt{m_{n}E_{pp}^{*} + \frac{\left|\vec{p}_{p}\right|^{2}}{4}} \mp \left|\vec{p}_{p}\right|(m_{n}E_{pp}^{*})\cos\theta$

Assuming charge symmetry $E_{nn}^* = E_{pp}^*$

22

Charge symmetry between ³H and ³He

One of the neutron (proton) momenta in ³H (³He) were calculated by excited energy of residual systems (E_{pp}^*)

The relative error of the nucleon momentum is expected to be same as one of the Fermi momentum

HIEI2022

The relative error of the Fermi momentum distribution at each momentum is less than 4%

23

Calculation of final state interaction

There are three parameters $(p_{\Lambda n}, a, r)$

March 22nd, 2022

