JLab meeting (Pb target)

Graduate School of Science, Kyoto University

Toshiyuki Gogami

Nov 15, 2023

Required beam time simulation (LOI12-23-013)

https://researchmap.jp/gogami/published_papers/42361620/attachment_file.pdf

FIG. 8. Flow chart of the simulation to evaluate the required beam times.

FIG. 9. Statistical uncertainties $(\Delta B_{\Lambda}^{\text{stat.}})$ obtained in the simulation for the ${}^{6}\text{Li}(e, e'K^{+})_{\Lambda}^{6}\text{He}$ reaction. The assumed beam current and target thickness are 50 μ A and 100 mg/cm², respectively. Peak fits to simulated spectra were performed 1000 times for each beam-time condition (3, 5, 10, and 15 days), and the obtained statistical uncertainties are filled in the histogram.

FIG. 10. Mean value of the statistical uncertainty on B_{Λ} (Fig. 9) as a function of a beam time for the ⁶Li($e, e'K^+$)⁶_{\Lambda} He reaction. Bands colored by blue and red correspond to standard deviations for the cases of 30- and 50- μ A beam currents, respectively. Necessary beam times, which meet the goal uncertainty $|\Delta B_{\Lambda}^{\text{stat.}}| = 40 \text{ keV}$, are 5 and 7 days for the beam currents of 30 and 50 μ A, respectively.

The same simulation was applied to the Pb target

Assumption for the simulation ($^{208}Pb \rightarrow ^{208}{}_{\Lambda}TI$)

T. Motoba, JPS Conf. Proc. 17, 011003 (2017); https://doi.org/10.7566/JPSCP.17.011003

Table III. Calculated cross sections for the ²⁰⁸Pb(γ, K^+)²⁰⁸Tl reaction at E_{γ} =1.56 GeV and θ_K^{Lab} = 5 and 10 deg. Each entry (nb/sr) is for the 1p-1h multiplet $[(n\ell j)_p^{-1}(n\ell j)^{\Lambda}]_J$ summed up over $j^{\Lambda} = \ell \pm 1/2$ and J.

	$\theta_K = 5^{\circ}$							$\theta_K = 10^{\circ}$				
	$0s^{\Lambda}$	$0p^{\Lambda}$	$0d^{\Lambda}$	$1s^{\Lambda}$	$0f^{\Lambda}$	$1p^{\Lambda}$	$(0g^{\Lambda})$	$0s^{\Lambda}$	$0p^{\Lambda}$	$0d1s^{\Lambda}$	$0f1p^{\Lambda}$	$0g1d2s^{\Lambda}$
$(2s_{1/2})_{\rm p}^{-1}$	15.2	18.2	21.6	2.1	38.8	1.09	31.2	3.6	10.2	11.4	14.5	20.0
$(1d_{3/2})_{\rm p}^{-1}$	19.5	43.9	54.0	4.7	46.8	16.7	37.6	5.4	19.6	30.9	34.8	37.9
$(0h_{11/2})_{\rm p}^{-1}$	2.2	14.8	28.9	8.8	44.2	20.7	49.9	2.3	10.1	29.3	41.7	60.5
$(1d_{5/2})_{\rm p}^{-1}$	29.0	64.0	80.7	6.9	69.0	24.9	46.5	7.9	28.0	45.2	53.8	55.9
$(0g_{7/2})_{\rm p}^{-1}$	5.2	22.2	36.2	9.6	46.2	27.1	49.0	3.1	12.9	27.2	41.9	58.2
$(0g_{9/2})_{\rm p}^{-1}$	6.5	26.6	44.9	11.9	55.0	32.8	60.9	3.8	15.1	31.5	49.1	70.6

Sample figures (20 μ A, 150 mg/cm², 20 days)

Accidental background subtraction + fitting

Sample figures (20 μ A, 150 mg/cm², 40 days)

0.6 MeV (FWHM)

Accidental background subtraction + fitting

Sample figures (10 μ A, 150 mg/cm², 20 days)

0.6 MeV (FWHM)

Accidental background subtraction + fitting

Sample figures (10 μ A, 150 mg/cm², 40 days)

0.6 MeV (FWHM)

Statistical errors on B_{Λ} obtained by fittings for 1000 simulated spectra

Result

Result

Schedule

- Jan: Consensus meeting
- April: 70% Draft
- May: Proposal submission

 $^{208}Pb(_{\gamma},K+)^{208},TI$

Note by T. Motoba (figures updated June 12)

The following three figures summarize the theoretical estimate of the DWIA cross sections calculated at $p(\gamma)=1.5$ GeV/c and $\theta(K)=0.5$ deg, in which the Saclay-Lyon A amplitudes and the nuclear HO wave functions are employed. Three cases of resolutions (FWHM=0.6, 0.8, 1.0 MeV) are assumed for PR12-18-004. JPG figures are inserted in this .ppt slides, so that one may copy them easily.

In drawing the spectra, however, the Λ single-particle energies from the Woods-Saxon potential (Millener et al., PRC38) are used instead of HO ones so as to be more realistic: E(L)=-25.99MeV(0s), -21.90(0p), -17.02(0d), -15.38(1s), -11.50(0f), -9.22(1p), -5.48(0g), -3.14(1d), -2.58(2s), +0.86(0h), +1.84(1f), +2.50(2p). These are slightly shifted to have E(L)=-26.35MeV(0s).

On the other hand, the proton single-hole energies are taken from the observed level energies of 207TI: Ex=0.0 MeV ($2s1/2^{hole}$), $0.351MeV (1d3/2^{hole})$, $1.348MeV (h11/2^{hole})$, $1.682MeV (1d5/2^{hole})$, 4.18MeV(approx. centroid of $0g7/2^{hole}$), and 6.57MeV (no observed value, but centroid assumed for 0g9/2). Note that the constant spreading widths of 2 MeV are assumed to take account of the fragmented proton 0g7/2 and 0g9/2 orbits.

The cross section estimates should be further improved if we use the followings:

1) the Woods-Saxon wave functions for both p and Λ in X-S estimates, and

2) the better elementary amplitudes which explains forward scatterings.

	s^{Λ}	p^{Λ}	d^Λ		f^{Λ}	
Core state $(E_x) \times (nlj)^{\Lambda}$	$0s^{\Lambda}_{1/2}$	$0p^{\Lambda}_{3/2} + 0p^{\Lambda}_{1/2}$	$0d^{\Lambda}_{5/2} + 0d^{\Lambda}_{3/2}$	$1s_{1/2}^{\Lambda}$	$0f^{\Lambda}_{7/2} {+} 0f^{\Lambda}_{5/2}$	$1p^{\Lambda}_{3/2}{+}1p^{\Lambda}_{1/2}$
$1/2^+(E_x=0.0): \pi(2s_{1/2}^{-1})$	22.2	15.6+7.8	22.1+14.8	1.6	26.6 + 20.0	2.6 + 1.3
$3/2^+(0.351)$: $\pi(1d_{3/2}^{-1})$	24.4	46.4 + 13.4	52.4 + 21.6	7.1	41.0 + 18.4	15.8 + 5.6
Left peak $d\sigma/d\Omega$	46.6	83.2	110.9	9.7	106.0	25.3
$(E_{\Lambda} = -B_{\Lambda} \text{ in MeV})$	(-26.16)	(-21.97)	(-17.11)		(-11.64)	
11/2 ⁻ (1.348): $\pi(0h_{11/2}^{-1})$	2.1	10.6 + 6.1	18.7 + 15.6	9.3	29.9 + 27.4	12.8 + 7.0
$5/2^+(1.682)$: $\pi(1d_{5/2}^{-1})$	36.7	51.7 + 35.2	58.1 + 52.4	10.6	42.9 + 44.0	20.3 + 12.4
Right peak $d\sigma/d\Omega$	39.8	103.5	144.8	19.9	149.3	52.5
$(E_{\Lambda} = -B_{\Lambda} \text{ in MeV})$	(-24.70)	(-20.60)	(-15.74)		(-10.32)	(-7.96)

Table 2: DWIA Cross Sections (nb/sr) for 208 Pb $(\gamma, K^+){}^{208}_{\Lambda}$ Tl at $p_{\gamma} = 1.5$ GeV/c and $\theta_K = 0.5$ deg.

Table 2 corresponds to set $E_{gs}({}^{208}_{\Lambda}\text{Tl}) = -26.35 \text{ MeV}$ (Exp). Figure shows a series of doublet peaks indicated respectively by s^{Λ} , p^{Λ} , d^{Λ} , f^{Λ} , etc. As known from the energy differences between low-lying energy levels of ${}^{207}\text{Tl}$, the proton-hole states are classified into two nearly degenerate groups in view of the 'critical' value $\Delta E_x \simeq 0.35$ MeV. The left member of each doublet is attributed to the structure $[\text{core}(1/2^+, 3/2^+) \times (nlj)^{\Lambda}]$, while the right member to $[\text{core}(11/2^-, 5/2^+) \times (nlj)^{\Lambda}]$. In the present calculation the elementary amplitude from the Saclay-Lyon model A is employed, but it should be noted that SLA leads to considerable overestimate at very forward angle $\theta_K^{\text{Lab}} \lesssim 5$ deg when compared with other theoretical models and/or experimental behaviors ($p_{\gamma} \simeq 1.3 \text{ GeV}/c$). One may refer to JPS Conf. Proc. 17, 011003 (2017) to see how the theoretical cross sections change depending on p_{γ} and θ_K .