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‘Grand challenges of hypernuclear physics

Interaction: “baryon-baryon interaction”
® 2 body interaction between baryons (Y: hyperon, N: nucleon)

e hyperon-nucleon (YN)

e hyperon-hyperon (YY) } Major issues in hypernuclear physics

Structure: “many-body system of nucleons and hyperon”

e Addition of hyperon as an impurity in (hyper)nuclei

e No Pauli exclusion between N and Y Structure changes
* YN interaction is different from NN Unique structure, -+ etc.

Today: “deformation of hypernuclei”



Structure of A hypernuclei

& A hypernuclei observed so far

® Concentrated in light A hypernuclei
® Most have well-developed cluster structure
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Structure of A hypernuclei

& A hypernuclei observed so far
® Concentrated in light A hypernuclei

® Most have well-developed cluster structure
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Toward heavier and exotic A hypernuclei

¢ Experiments at J-PARC, JLab, etc.

® Heavier(sd-shell) & n-rich hypernuclei can be produced

® Various structures will appear
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Today: “deformation of hypernuclei”



‘What is expected in deformed A hypernuclei

® Deformation change

e A particle can change nuclear deformation

e Difference of B, depending on nuclear deformation

e Energy shifts in excitation spectra

® Coupling of A to deformed nuclei shows unique structure

e For example, rotational band, mixing of configuration, ... etc.



Deformation change by A particle

& A particle in s orbit reduces nuclear deformation

Example: 13AC, AMD calc M., etal., PRC83, 044323(2011)
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Deformation change by A particle

Many authors predict the deformation change by A in s-orbit
Skyrme-Hartree-Fock (SHF)

AMD, present
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Deformation change by A particle

 Ain s orbitis deeply bound with smaller deformation corresponding
to larger overlap between A and N

* Deformation change is caused by competition between A binding
energy and nuclear energy surface

b/l(ﬁ) — core(ﬁ) EA(:B) .86 Cfl' energy Curve'

12.0
%l T“-I;é_ _ENC - _ s 2oz s T.Z.c.(:l_-)___o _____________
2, 100+ (+)QAs =~ 4 g 88| TTTTTT- =7
« 20 T 2 A
= W -98 t I
< 12C(+)®Ap ............... \ 2C(+)®As ____—|

0.0 - - | 1 1ol " l ]

quadrupole deformation [3
quadrupole deformation f3



‘What is expected in deformed A hypernuclei

® Deformation change

e A particle can change nuclear deformation

e Difference of B, depending on nuclear deformation

e Energy shifts in excitation spectra

® Coupling of A to deformed nuclei shows unique structure

e For example, rotational band, mixing of configuration, ... etc.



Difference of B, depending on nuclear deformation

® B, is sensitive to nuclear deformation through overlap b/w A and N
M. Isaka, et al., PRC89, 024310(2014)

19Ca (amD) Overlap: I = [ d*rpy(r)pa(r) [fm?]
330 | ND 0 SD IR
+ 3 1 —

— GS o) 1801 1=0.1364| e
> -340 | i MeV i
= 0; T MeV
> asol | 4
o =30 19.45 — A 1/23 ND |
L%‘ MeV 1/23 I1=0.1356|

-360 + 1

i ‘ACa@amb) SD |
Note: Deformation change is quite small 1=0.1336 j




‘What is expected in deformed A hypernuclei

® Deformation change

e A particle can change nuclear deformation

e Difference of B, depending on nuclear deformation

e Energy shifts in excitation spectra

® Coupling of A to deformed nuclei shows unique structure

e For example, rotational band, mixing of configuration, ... etc.

Today { * triaxial deformation of Mg nuclei: 2/, Mg, future exp at JLab
* Rotational bands by A in p orbit coupled to the core



Coupling of A in p-orbit: p-states of °,Be

9 Be: axially symmetric 2a clustering
* Anisotropic p orbit of A hyperon
e Axial symmetry of 2a clustering

—> p-orbit parallel to/perpendicular to the 2o clustering
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‘What is expected in deformed A hypernuclei

® Deformation change

e A particle can change nuclear deformation

e Difference of B, depending on nuclear deformation
e Energy shifts in excitation spectra

® Coupling of A to deformed nuclei shows unique structure
e For example, rotational band, mixing of configuration, ... etc.

Today { * triaxial deformation of Mg nuclei: 2/, Mg, future exp at JLab
* Rotational bands by A in p orbit coupled to the core



M.I., et al., PRC83(2011) 044323

Theoretical Framework: HyperAMD M., et al, PRCB3(2011) 054304

HyperAMD: Antisymmetrized Molecular Dynamics for hypernuclei

¢Hamiltonian . NN:Gogny D1S, Volkov No.2
H T +VN|\I +T +VA,\I — T, AN:YNG interaction (ESC14)

& Wave function

1
. on (F)=——detlp (F )
e Nucleon part:Slater determinant VA

Spatial part of s.-p. w.f. is described goi(r)oceXp{—GEEG(r—Zi)i}zini
as Gaussian packets Xi=oix+bix,

e Single-particle w.f. of A hyperon: %(r):ZCm%(")
Superposition of Gaussian packets o Ocexp{ Zﬂv i }(

e Total w.f.: W(F): ;Cm(om (rA)®ﬁdet[ I(FJ )] X = A Xr "‘bm



Theoretical framework: HyperAMD

& Procedure of the calculation

7

Variation

: : dX, xoH*
* Imaginary time development method: o i K <0
e Variational parameters: X, =2,,z;,a;, B, a,b,v, ¢
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Theoretical framework: HyperAMD

& Procedure of the calculation

® Energy variation with constraint on nuclear quadrupole deformation

Described by (3, 7)
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Theoretical framework: HyperAMD

& Procedure of the calculation

® Energy variation with constraint on nuclear quadrupole deformation
Described by (3, 7)
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Middle = e
Triaxial
Candidate: Mg isotope

0

Spherical

* Energy variation is performed at each (3, y) _
* p states are obtained by constraint on A single particle wf: V, =13 los){¢/]



M.l., et al., PRC83(2011) 044323

Theoretical Framework: HyperAMD M., et al, PRCB3(2011) 054304
& Procedure of the numerical calculation
4 + )
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Deformation of Mg nuclei

Ex.) 2*Mg
. 12
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Deformation of Mg nuclei

26\|g * Shell gap in Nilsson diagram: Z=12 (prolate) vs. N=14 (oblate) — triaxial
* 3,y-soft nature is discussed by several authors
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Split of p-state in ?,Be

¢°,Be with 2a cluster structure

p orbit parallel to 2a (long axis)

Large overlap
Deeply bound

p orbit perpendicular to 2a (short axes)

Small overlap
Shallowly bound

>

pil

R.H. Dalitz, A. Gal, PRL 36 (1976) 362.
H. Bando, et al., PTP 66 (1981) 2118.
T. Motoba, et al.,PTPS81, 42(1985).

p-states splits into 2 bands depending on the direction of p-orbits



Triaxial deformation

If 26Mg is triaxially deformed nuclei
— p-states split into 3 different state

Large overlap
Deeply bound

Middle

Small overlap
shallow binding
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A
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Observing the 3 different p-states is strong evidence of triaxial deformation



Energy surface on (3, y) plane

& p-states of 27, Mg
e 3 different p states appear by the energy variation with constraints
e With different spatial distribution of A (iny = 30 deg. region)

Mg
A 1n p orbi
(2nd)




Results: Single particle energy of A hyperon

¢ A single particle energy on (3, y) plane

EA(B,Y) = Enp(B,Y) = Ecore (B, V)
27Mg (AMD, A in p orbit) e

eA(B,y): energy difference

Lowest

Single particle energy of A particle is different in each p state
corresponding the difference of overlap between A and nucleons



Results: Single particle energy of A hyperon

¢ A single particle energy on (3, y) plane

en(B,y) = EAP(IB:V) — Ecore(B,7)
27Mg (AMD, A in p orbit)
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Single particle energy of A particle is different in each p state
corresponding the difference of overlap between A and nucleons



Results: Single particle energy of A hyperon g,

Mg (AMD) e2(B.7)=E,(8.7) ~Eeore (B.7)
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Results: Excitation spectra

® 3 bands are obtained by A in p-orbit
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A particle as a probe to study triaxial deformation

& Advantages of using hypernuclei (including future tasks)
e 3 different p states could be a direct evidence
— Production cross section

® Deformation changes if occur

— A does not affect triaxiality in p state
A in s orbit can reduce 3 deformation? State dependence?

e Difference of (f3,y) deformation in ground- and excited states
e ls it possible to see B3, y-soft nature of energy surface?



Summary and Future problems

& Hypernuclear deformation
e Deformation change by A particle
e Difference of B, depending on deformation

® Coupling of A to deformed nuclei
e Today’s topic: p-states in triaxially deformed Mg hypernuclei

& Study of 2°Mg: possibility to use A as a probe of deformation
® Detailed analysis: By-dep., rotational bands, B(E2), ... etc.
® Production cross section: how to identify?
e Can A be a probe to study (pB)y-soft nature?



