## H3/D2 status

Michael Nycz<br>Kent State University

## Reminder : Pass 1 cuts and corrections

## Cuts

## Corrections

- $\theta<|0.06|$
- $\phi<|0.03|$
- $\delta p<|0.04|$
- z > -0.09 \& z < 0.01
- Cherekov sum > 2000
- $\mathrm{E} / \mathrm{p}>0.75$
- Triggers:
- T2 \& T5
- $\mathrm{W}^{2}>3.0$
- Live Time
- Density : new H3 density
- ${ }^{+}$
- End Cap
- Beta Decay
- Radiative Corrections - (T2 externals)


## $H 3 / D 2$ with updated H3 density


consistent with expectations

Next Step
Isoscalar correction

## Isoscalar factor

- EMC ratio : Ratio of per nucleon cross sections
- where the per nucleon cross section is : $\frac{\sigma^{A}}{A}$
- For non-isoscalar nuclei : $\mathrm{Z} \neq \mathrm{A} / 2$
- need to apply isoscalar correction to account for difference in proton and neutron cross sections
$f_{\text {iso }}$ depends on $\frac{F_{2}^{n}}{F_{2}^{p}}$ input (Tong Su)
- $f_{\text {iso }}=\frac{\frac{1}{2}\left[F_{2}^{n}+F_{2}^{p}\right]}{\frac{1}{A}\left[Z F_{2}^{p}+(A-Z) F_{2}^{n}\right]} \Rightarrow f^{\text {iso }}=\frac{\frac{1}{2}\left[1+\frac{F_{2}^{n}}{F_{2}^{p}}\right]}{\frac{1}{A}\left[Z+\left(A-Z \frac{F_{2}^{n}}{F_{2}^{p}}\right]\right.}$


## Isoscalar correction factor for ${ }^{H 3} / \mathrm{DL}_{2}$

 with different $\frac{F_{2}^{n}}{F_{2}^{F_{2}}}$ normalizationsIsoscalar correction factor


## H3/D2 Isoscalar corrected ratio Kulagni \& Petti model



- Appears to match well with KP model
- Need to look into "Bumps" [~0.37,~0.49] - pass2
- $0.5 \%$ random systematic uncertainty is included along with statistical errors


## Bin Centering Check

- In a given bin, the yield will be the averaged value not the central value of the bin
- Bin Centering Correction Factor for MARATHON?
- Should be in terms of the ratio (since that is ultimately what we are doing)
- large? small?
- Check the relative magnitude of the correction for each target with a model (Kulagin and Petti)
- Look at the ratio of these factors


## General Procedure

- KP model provides $\mathrm{F}_{2}$ and $\mathrm{x}_{\mathrm{b}}$ for Tritium, Helium 3, and Deuterium:
- Use this to calculate : $\sigma_{3_{H}}, \sigma_{3_{H e}}, \sigma_{2_{D}}$
- Using the cross sections and $\mathrm{x}_{\mathrm{bj}}$ we can test how different the average value for a given bin is from the bin center
"Bin Center"
- Create bins from model
- example : bin data in groups of 5

- BCCF = how different the average value of the group is from the bin centered value
- What is the ratio of these corrections for H3,He3,D2 targets?
- Rinse and repeat : vary bins size
- compare with our nominal bin size : 0.03


## Bin size $=0.051$




## Bin Size $=0.034$ ( $\approx$ our bin size)




## Conclusions

- The larger the bin, the larger the correction factor (not surprising)
- Bin size $=0.034$ : the ratio of the Bin Centering Correction factor for $\frac{3_{H}}{3_{H e}}, \frac{3_{H e}}{2_{D}}, \& \frac{3_{H}}{2_{D}}$ is $\lesssim \mathbf{0 . 1} \%$ [Our nominal bin size]
- Suggests that we do not need to add a bin centering correction for the ratios


## Thanks

(Will post some comparison plots for pass 2 shortly...)

## Checks and Double Checks

- Checked corrections
- Checked Yields for each Target
- Checked need for Bin Centering $\checkmark$



## Plot of corrected H3/D2



