Model selection in electromagnetic production of kaons

Dalibor Skoupil

(in collaboration with P. Bydžovský, A. Cieplý, D. Petrellis, and D. Trnková)

Phys. Rev. C 93, 025204 (2016) Phys. Rev. C 97, 025202 (2018) Phys. Rev. C 104, 065202 (2021) Phys. Rev. C 107, 045206 (2023)

Workshop of Electro- and Photoproduction of Hypernuclei and Related Topics 2024

Nuclear Physics Institute, CAS, Řež, Czech Republic October 17, 2024

Motivation for the work on kaon photo/electroproduction

- We aim at understanding the baryon spectrum and production dynamics of particles with strangeness at low energies.
- Constituent Quark Model predicts a lot more N* states than was observed in pion production experiments → "missing" resonance problem.
- Models for the description of elementary hyperon electroproduction are a suitable tool for hypernuclear physics calculations (PR C 106, 044609 (2022), PR C 108, 024615 (2023)).
- New good-quality photoproduction data from BGOOD, LEPS, GRAAL, MAMI and (particularly) CLAS collaborations allow us to tune free parameters of the models.
- As the α_s increases with decreasing energy, we cannot use perturbative QCD at low energies → need for introducing effective theories and models.

Introduction

Photoproduction process

 $p(p) + \gamma(k) \rightarrow K^+(p_K) + \Lambda(p_\Lambda)$

- Threshold: $E_{\gamma}^{lab} = 0.911 \text{ GeV}, W = 1.609 \text{ GeV}$
- In the lowest order, the reaction is described by the exchange of hadrons.
 - The 3rd nucleon-resonance region:

many resonant states and no dominant one in the kaon photoproduction \rightarrow need to assume a large number of nucleon resonances with mass $<2.5\,\text{GeV}$

 Resonance region: resonance contributions dominate (N*)

 Background: a plenty of nonresonant contributions (ρ, Κ, Λ; Κ* and Y*)

Isobar model

Single-channel approximation

 higher-order contributions (rescattering, FSI) included, to some extent, by means of effective values of the coupling constants

Use of effective hadron Lagrangian

- hadrons either in their ground or excited states
- amplitude constructed as a sum of tree-level Feynman diagrams
 - background and resonant part

· hadronic form factors account for the inner structure of hadrons

Free parameters (couplings, hff's cutoffs) adjusted to experimental data.

Satisfactory agreement with the data in the energy range $W = 1.6 - 2.5 \,\text{GeV}$.

Isobar model Calculation procedure

• Reaction amplitude: sum of *s*-, *t*-, and *u*-channel (non) Born amplitudes

$$\mathbb{M} = \sum_{x} \mathbb{M}_{x}, ext{ where } x \equiv s, t, u, N^{*}, K^{*}, Y^{*}$$

• Each contribution can be rewritten in a compact form

$$\mathbb{M}(\boldsymbol{\rho},\boldsymbol{\rho}_{\Lambda},\boldsymbol{k})=\bar{u}(\boldsymbol{\rho}_{\Lambda})\gamma_{5}\left(\sum_{j=1}^{6}\mathcal{A}_{j}(\boldsymbol{s},\boldsymbol{t},\boldsymbol{u})\mathcal{M}_{j}\right)\boldsymbol{u}(\boldsymbol{\rho}),$$

where A_j are scalar amplitudes and M_j are gauge-invariant operators, *i.e.* $k_{\mu}M_j^{\mu} = 0$,

$$\begin{split} \mathcal{M}_{1} &= \frac{1}{2} \left[\not k \not \in - \not \in \not k \right], & \mathcal{M}_{2} &= (p \cdot \varepsilon) - (k \cdot p) \frac{(k \cdot \varepsilon)}{k^{2}}, \\ \mathcal{M}_{3} &= (p_{\Lambda} \cdot \varepsilon) - (k \cdot p_{\Lambda}) \frac{(k \cdot \varepsilon)}{k^{2}}, & \mathcal{M}_{4} &= \not \in (k \cdot p) - \not k (p \cdot \varepsilon), \\ \mathcal{M}_{5} &= \not \in (k \cdot p_{\Lambda}) - \not k (p_{\Lambda} \cdot \varepsilon), & \mathcal{M}_{6} &= \not k (k \cdot \varepsilon) - \not \in k^{2}. \end{split}$$

Isobar model Calculation procedure

• CGLN amplitudes $f_i(k^2, s, t)$

$$\begin{split} \mathbb{M} &= \chi_{\Lambda}^{\dagger} \mathcal{F} \chi_{\rho}; \quad \mathcal{F} = f_{1}(\vec{\sigma} \cdot \vec{\varepsilon}) - if_{2}(\vec{\sigma} \cdot \hat{\rho}_{K})[\vec{\sigma} \cdot (\hat{k} \times \vec{\varepsilon})] + f_{3}(\vec{\sigma} \cdot \hat{k})(\hat{\rho}_{K} \cdot \vec{\varepsilon}) \\ &+ f_{4}(\vec{\sigma} \cdot \hat{\rho}_{K})(\hat{\rho}_{K} \cdot \vec{\varepsilon}) + f_{5}(\vec{\sigma} \cdot \hat{k})(\hat{k} \cdot \vec{\varepsilon}) + f_{6}(\vec{\sigma} \cdot \hat{\rho}_{K})(\hat{k} \cdot \vec{\varepsilon}) \end{split}$$

where e.g.

$$f_1 = N^*[-(W - m_p)\mathcal{A}_1 + (k \cdot p)\mathcal{A}_4 + (k \cdot p_\Lambda)\mathcal{A}_5 - k^2\mathcal{A}_6]$$

Response functions, e.g. transverse cross section

$$\begin{split} \frac{d\sigma}{d\Omega} &= \sigma_T = C \left\{ |f_1|^2 + |f_2|^2 - 2\operatorname{Re} f_1 f_2^* \cos \theta_K \\ &+ \sin^2 \theta_K \left[\frac{1}{2} (|f_3|^2 + |f_4|^2) + \operatorname{Re} \left(f_1 f_4^* + f_2 f_3^* + f_3 f_4^* \cos \theta_K \right) \right] \right\}, \end{split}$$

(for other response functions see Z. Phys. A 352 (1995) 327)

Isobar model Novel features of our isobar model

Exchanges of high-spin resonant states

non physical lower-spin components removed by appropriate choice of L_{int}

$$V^{\mu}_{S} \, \mathcal{P}^{(1/2)}_{ij,\,\mu
u} \, V^{
u}_{EM} = 0$$

Energy-dependent decay widths of nucleon resonances \rightarrow restoration of unitarity

$$\Gamma(\vec{q}) = \Gamma_{N^*} \frac{\sqrt{s}}{m_{N^*}} \sum_i x_i \left(\frac{|\vec{q}_i|}{|\vec{q}_i^{N^*}|} \right)^{2l+1} \frac{D(|\vec{q}_i|)}{D(|\vec{q}_i^{N^*}|)},$$

Extension from photoproduction to electroproduction

- · Phenomenological form factors in the electromagnetic vertex
- Longitudinal couplings of N^* 's to γ^* (crucial at small Q^2)

$$\begin{split} V^{EM}(N^*_{1/2} p\gamma) &= -i \frac{g_3^{EM}}{(m_R + m_\rho)^2} \Gamma_{\mp} \gamma_{\beta} \mathcal{F}^{\beta} \,, \\ V^{EM}_{\mu}(N^*_{3/2} p\gamma) &= -i \frac{g_3^{EM}}{m_R(m_R + m_\rho)^2} \gamma_5 \Gamma_{\mp} \left(\not\!\!\!/ g_{\mu\beta} - q_{\beta} \gamma_{\mu} \right) \, \mathcal{F}^{\beta} \,, \\ V^{EM}_{\mu\nu}(N^*_{5/2} p\gamma) &= -i \frac{g_3^{EM}}{(2m_\rho)^5} \Gamma_{\mp} (q_{\alpha} q_{\beta} g_{\mu\nu} + q^2 g_{\alpha\mu} g_{\beta\nu} - q_{\alpha} q_{\nu} g_{\beta\mu} - q_{\beta} q_{\nu} g_{\alpha\mu}) \, p^{\alpha} \mathcal{F}^{\beta} \,. \end{split}$$

Fitting the data in the $K^+\Lambda$ channel

Minimization of χ^2 /n.d.f. with help of MINUIT library

Resonance selection

- s channel: spin-1/2, 3/2, and 5/2 N* with mass < 2.5 GeV;
- *t* channel: *K**(892), *K*₁(1272)
- *u* channel: *Y**(1/2) and *Y**(3/2)

Free parameters ($\approx 30 + 10$):

- SU(3)_f: $-4.4 \le g_{K\Lambda N}/\sqrt{4\pi} \le -3.0,$ $0.8 \le g_{K\Sigma N}/\sqrt{4\pi} \le 1.3$
- *K**'s have vector and tensor couplings
- spin-1/2 resonance → 1 parameter; spin-3/2 and 5/2 resonance → 2 parameters
- 2 cut-off parameters for the hff
- 1 longitudinal coupling for each N*
- 2 cut-off parameters for the emff of K* and K₁

Experimental data

3383 $p(\gamma, K^+)\Lambda$ data

- cross section for W < 2.355 GeV (CLAS 2005 & 2010; LEPS, Adelseck-Saghai)
- hyperon polarisation for W < 2.225 GeV (CLAS 2010)
- beam asymmetry (LEPS)

171 $p(e, e'K^+)\Lambda$ data

σ_U, σ_T, σ_L, σ_{LT}, σ_K

Resulting models for the $K^+ \Lambda$ photo- and electroproduction

BS1 model ($\chi^2/n.d.f. = 1.64$)

- $S_{11}(1535), S_{11}(1650), F_{15}(1680), P_{13}(1720), F_{15}(1860), D_{13}(1875), F_{15}(2000);$
- K^{*}(892), K₁(1272);
- Λ(1520), Λ(1800), Λ(1890), Σ(1660), Σ(1750), Σ(1940);
- multidipole form factor:

 $\Lambda_{bgr} = 1.88 \, \text{GeV}, \, \Lambda_{res} = 2.74 \, \text{GeV}$

BS3 model ($\chi^2/n.d.f. = 1.74$)

- $S_{11}(1535), S_{11}(1650), F_{15}(1680), P_{11}(1710), P_{13}(1720), F_{15}(1860), D_{13}(1875), P_{13}(1900), F_{15}(2000), D_{13}(2120);$
- K^{*}(892), K₁(1272);
- Λ(1405), Λ(1600), Λ(1890), Σ(1670);
- dipole form factor:

$$\Lambda_{bgr} = 1.24 \, \text{GeV}, \, \Lambda_{res} = 0.89 \, \text{GeV}$$

Transverse, σ_T , and longitudinal, σ_L , cross sections of $p(e, e'K^+) \wedge$

Extension from photo- to electroproduction

- BS1: naive extension by adding em. form factors only
- BS3: em. form factors and longitudinal couplings of N*'s to γ* added

 $\chi^{\rm 2}$ minimization and overfitting

Fitting procedure with MINUIT library: **minimizing the** χ^2

$$\chi^2 = \sum_{i=1}^{N} \frac{[d_i - p_i(c_1, \dots, c_n)]^2}{\sigma_{d_i}^2}$$

 (c_1, \ldots, c_n) - set of free parameters, (d_1, \ldots, d_N) - set of data points, p_i - theory, σ_{d_i} - error **Problem:** χ^2 minimization cannot prevent overfitting

Example: polynomial curve fitting

•
$$f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_k x^k$$

• increasing order of polynomial *k* fits the data well...

...but gives only poor description of the function which generated them...

...and may fail to generalize to new data

 Occam's razor (law of parsimony): simpler models should be preferred

New fits of $K^+\Sigma^-$ channel Least Absolute Shrinkage and Selection Operator (LASSO)

Remedy to the overfitting issue: regularization

• introduce a penalty term to the $\chi^2 \rightarrow$ penalization of large parameter values

$$\chi_P^2 = \chi^2 + P(\lambda)$$

• penalty term:
$$P(\lambda) = \lambda^4 \sum_{i=1}^{N_{res}} |g_i|$$

 λ - regularization parameter, g_i - resonances' couplings

- LASSO forces some of the parameters to zero
 → selection of a subset of the fit parameters
- λ controls the strength of the penalty and thus the complexity of the model
 → higher powers of λ allow fine sampling of the region of small λ

Information criteria:

- Akaike information criterion AIC = $2n_i + \chi_P^2$
- Corrected Akaike information criterion AICc = AIC + $\frac{2n_i(n_i+1)}{N-n_i-1}$
- Bayesian information criterion BIC = $n_i \ln(N) + \chi_P^2$

 n_i - no. of parameters corresponding to λ_i

N - number of data points

Applying the information criteria - forward selection

- 1 start with the full model: parameters initialized within $\langle -1; +1 \rangle$; use λ_{max}
- 2 perform LASSO χ^2_P minimization and compute IC
- ${f 3}$ in each run reduce λ and run LASSO with the values of the previous run as starting values
- 4 repeat until λ_{\min} is reached

Optimal λ occurs at the minimum of the IC.

Fitting procedure

- resonance selection: motivation from previous analysis of $K^+\Lambda$ channel
- non resonant part: Born terms and exchanges of K* and K₁ and Σ*'s
- resonant part: exchanges of N^* 's and Δ^* 's in the s channel
- around 600 data utilized to fit ≤ 25 parameters (new CLAS data on Σ → main motivation for this study)
- result with the smallest $\chi^2/ndf = 2.3 \rightarrow fit M$ (25 parameters, 14 resonances)
- LASSO applied at fit M: $\chi_P^2/ndf = 3.4 \rightarrow fit L$ (17 parameters, 9 resonances)

Characteristics of models

- only one Δ resonance introduced
- no hyperon resonances needed for reliable data description
- results in very good agreement with the cross-section and beam-asymmetry data
- fit L is very economical

Differential cross section in dependence on the photon lab energy

Differential cross section in dependence on the photon lab energy - fit L w/o individual resonances

Notation: N7: N(1720)3/2⁺, M4: N(2060)5/2⁻

Dalibor Skoupil

Beam asymmetry in dependence on the kaon center-of-mass angle - fit L w/o individual resonances

17/26

LASSO in the $K^+\Lambda$ channel

Selecting a subset of resonances (SOČ – D. Trnková)

Resonances in BS1 and BS1L:

- $S_{11}(1535), S_{11}(1650), F_{15}(1680), P_{13}(1720), F_{15}(1860), D_{13}(1875), F_{15}(2000);$
- K*(892), K₁(1272);
- Λ(1520), Λ(1800), Λ(1890), Σ(1660), Σ(1750), Σ(1940)

Model	no. of resonances	no. of parameters	$\chi^2/n.d.f.$
BS1	16	31	1.6
BS1L	9	20	3.6

Σ photoproduction channels

A systematic study

channel	$d\sigma/d\Omega$	P, Σ, T, \ldots	%
$\gamma + p ightarrow K^+ + \Sigma^0$	6681	1465	92.67
$\gamma + n \rightarrow K^+ + \Sigma^-$	429	36	5.29
$\gamma + {\it p} ightarrow {\it K}^0 + \Sigma^+$	116	57	1.97
$\gamma + n ightarrow K^0 + \Sigma^0$	0	6	0.07

Data base (Prog. Part. Nucl. Phys. 111 (2020) 103752):

Strategy:

- **()** fit parameters in the $K^+\Sigma^0$ channel \rightarrow select a basic set of resonances
- 2 do fits in other channels \rightarrow modify the resonance set (if necessary)
- OR relate as many couplings as possible among the channels (using isospin symmetry, helicity amplitudes)

 $\dots K^+ \Sigma^0$ channel comprises more than 90% of the available data, shouldn't we consider all the other channels as predictions?

Models A (w/o LASSO) and B (w/ LASSO) ... submitted to PR C

Resonances in models A and B:

- N3(1535)1/2⁻, N4(1650)1/2⁻, N9(1680)5/2⁺, N7(1720)3/2⁺, P5(1820)5/2⁺, M4(1860)1/2⁻, P4(1875)3/2⁻, P2(1900)3/2⁺, Δ(1900)3/2⁺, P3(2000)5/2⁺, M2(2300)1/2⁺;
- K*(892), K₁(1272);
- Λ(1890), Σ(1660).

Model	no. of resonances	no. of parameters	$\chi^2/{\rm n.d.f.}$
Α	15	29	2.02
В	7	14	4.67

Models A (w/o LASSO) and B (w/ LASSO) - comparison with SAPHIR data

Refitting the model's parameters in the $K^+\Lambda$ channel

Ridge regression and cross validation for suppressing hyperon couplings

Why refit?

- include recent measurements of polarization observables (PR C 93, (2016) 065201)
- need to investigate more the role of hyperon resonances in KY photoproduction
- large values of hyperon couplings: ridge regression to suppress them during the fitting procedure

Ridge regularization

- penalized χ_P^2 : $\chi_P^2 = \chi^2 + \lambda^4 \sum_{i=1}^{n_{\Lambda}} g_i^2$, ($n_{\Lambda} = no. \text{ of } Y \text{ couplings}$)
- · parameter values reduced but they are not reduced to zero

Cross validation (here 4-fold)

Model selection in elmag production of kaon

Relative percentage reduction of the resonance couplings

BS2

BS2r

Tag	Resonance	g_1	g_2		
L1	$\Lambda(1405) \ 1/2$	9.67	-	2.624	
S1	$\Sigma(1660) \ 1/2^+$	-8.09	-	 -5.925	
L4	$\Lambda(1800) \ 1/2^{-}$	-11.55	-	-1.409	
S4	$\Sigma(1940) \; 3/2^-$	-0.86	0.18	-0.685	0.079

- g_i values from the unregularized fitting
- \tilde{g}_i values after performing Ridge regularization

$K^+\Lambda$ channel: beam asymmetry Σ

$K^+\Lambda$ channel: target asymmetry T

Summary

New version of isobar model for the $K^+\Lambda$ channel

available for calculations online at:

http://www.ujf.cas.cz/en/departments/
department-of-theoretical-physics/isobar-model.html

...sadly, this is no longer true

Description extended from the $K^+\Lambda$ channel to the $K^+\Sigma^-$ channel.

First fits on the $K^+\Sigma^0$ channel; analysis of other Σ photoproduction channels soon...

Regularization methods introduced as a remedy for overfitting and as model selection tools.

Outlook

- testing the models in the calculations for hypernucleus production (PR C 106, 044609 (2022), PR C 108, 024615 (2023))
- performing an analysis of Σ photoproduction channels
- extending the analysis of electroproduction beyond $Q^2 = 1 \text{ GeV}^2$
- studying the production of Ξ hypernuclei
- preparing amplitude for η' photoproduction

Thank you for your attention!