Model selection in electromagnetic production of kaons

Dalibor Skoupil

(in collaboration with P. Bydžovský, A. Cieplý, D. Petrellis, and D. Trnková)

Phys. Rev. C **93**, 025204 (2016) Phys. Rev. C **97**, 025202 (2018) Phys. Rev. C **104**, 065202 (2021) Phys. Rev. C **107**, 045206 (2023)

Workshop of Electro- and Photoproduction of Hypernuclei and Related Topics 2024

Nuclear Physics Institute, CAS, Řež, Czech Republic October 17, 2024

Motivation for the work on kaon photo/electroproduction

- We aim at understanding the baryon spectrum and production dynamics of particles with strangeness at low energies.
- Constituent Quark Model predicts a lot more *N*[∗] states than was observed in pion production experiments \rightarrow "missing" resonance problem.
- Models for the description of elementary hyperon electroproduction are a suitable tool for hypernuclear physics calculations (PR C 106, 044609 (2022), PR C 108, 024615 (2023)).
- New good-quality photoproduction data from BGOOD, LEPS, GRAAL, MAMI and (particularly) CLAS collaborations allow us to tune free parameters of the models.
- As the α_s increases with decreasing energy, we cannot use perturbative QCD at low energies \rightarrow need for introducing effective theories and models.

Introduction

Photoproduction process

 $p(p) + \gamma(k) \rightarrow K^+(p_K) + \Lambda(p_\Lambda)$

- \bullet Threshold: $E_\gamma^{lab}=$ 0.911 GeV, W $=$ 1.609 GeV
- In the lowest order, the reaction is described by the exchange of hadrons.
	- *The 3rd nucleon-resonance region:* many resonant states and no dominant one in the kaon photoproduction \rightarrow need to assume a large number of nucleon resonances with mass < 2.5 GeV

• Resonance region:

resonance contributions dominate (*N*∗)

Background: a plenty of nonresonant contributions (*p*, *K*, Λ; *K* [∗] and *Y* ∗)

Isobar model

Single-channel approximation

• higher-order contributions (rescattering, FSI) included, to some extent, by means of effective values of the coupling constants

Use of effective hadron Lagrangian

- hadrons either in their ground or excited states
- amplitude constructed as a sum of tree-level Feynman diagrams
	- background and resonant part

• hadronic form factors account for the inner structure of hadrons

Free parameters (couplings, hff's cutoffs) adjusted to experimental data.

Satisfactory agreement with the data in the energy range *W* = 1.6 − 2.5 GeV.

Isobar model Calculation procedure

• Reaction amplitude: sum of *s* -, *t* -, and *u* - channel (non) Born amplitudes

$$
\mathbb{M} = \sum_{x} \mathbb{M}_x, \text{ where } x \equiv s, t, u, N^*, K^*, Y^*
$$

• Each contribution can be rewritten in a compact form

$$
\mathbb{M}(p, p_\Lambda, k) = \bar{u}(p_\Lambda) \gamma_5 \left(\sum_{j=1}^6 \mathcal{A}_j(s, t, u) \mathcal{M}_j \right) u(p),
$$

where \mathcal{A}_j are scalar amplitudes and \mathcal{M}_j are gauge-invariant operators, *i.e.* $k_\mu \mathcal{M}^\mu_j = 0$ *,*

$$
\mathcal{M}_1 = \frac{1}{2} \left[\cancel{k} \cancel{\notin} - \cancel{\notin} \cancel{k} \right], \qquad \mathcal{M}_2 = (p \cdot \varepsilon) - (\cancel{k} \cdot p) \frac{(\cancel{k} \cdot \varepsilon)}{\cancel{k}^2}, \mathcal{M}_3 = (p_\Lambda \cdot \varepsilon) - (\cancel{k} \cdot p_\Lambda) \frac{(\cancel{k} \cdot \varepsilon)}{\cancel{k}^2}, \qquad \mathcal{M}_4 = \cancel{\notin} (\cancel{k} \cdot \cancel{p}) - \cancel{k} (p \cdot \varepsilon), \mathcal{M}_5 = \cancel{\notin} (\cancel{k} \cdot p_\Lambda) - \cancel{k} (p_\Lambda \cdot \varepsilon), \qquad \mathcal{M}_6 = \cancel{k} (\cancel{k} \cdot \varepsilon) - \cancel{\notin} \cancel{k}^2.
$$

Isobar model Calculation procedure

• CGLN amplitudes $f_i(k^2, s, t)$

$$
\mathbb{M} = \chi^{\dagger}_{\Lambda} \mathcal{F} \chi_{\rho}; \quad \mathcal{F} = f_{1}(\vec{\sigma} \cdot \vec{\varepsilon}) - i f_{2}(\vec{\sigma} \cdot \hat{\rho}_{\mathcal{K}}) [\vec{\sigma} \cdot (\hat{k} \times \vec{\varepsilon})] + f_{3}(\vec{\sigma} \cdot \hat{k}) (\hat{\rho}_{\mathcal{K}} \cdot \vec{\varepsilon}) + f_{4}(\vec{\sigma} \cdot \hat{\rho}_{\mathcal{K}}) (\hat{\rho}_{\mathcal{K}} \cdot \vec{\varepsilon}) + f_{5}(\vec{\sigma} \cdot \hat{k}) (\hat{k} \cdot \vec{\varepsilon}) + f_{6}(\vec{\sigma} \cdot \hat{\rho}_{\mathcal{K}}) (\hat{k} \cdot \vec{\varepsilon})
$$

where *e.g.*

$$
f_1 = N^*[-(W - m_p)\mathcal{A}_1 + (k \cdot p)\mathcal{A}_4 + (k \cdot p_A)\mathcal{A}_5 - k^2 \mathcal{A}_6]
$$

• Response functions, *e.g.* transverse cross section

$$
\frac{d\sigma}{d\Omega} = \sigma_T = C \left\{ |f_1|^2 + |f_2|^2 - 2 \operatorname{Re} f_1 f_2^* \cos \theta_K
$$

+ $\sin^2 \theta_K \left[\frac{1}{2} (|f_3|^2 + |f_4|^2) + \operatorname{Re} (f_1 f_4^* + f_2 f_3^* + f_3 f_4^* \cos \theta_K) \right] \right\},$

(for other response functions see Z. Phys. A **352** (1995) 327)

Isobar model Novel features of our isobar model

Exchanges of high-spin resonant states

• non physical lower-spin components removed by appropriate choice of L*int*

$$
V_S^\mu\,\mathcal{P}_{ij,\mu\nu}^{(1/2)}\;V_{EM}^\nu=0
$$

Energy-dependent decay widths of nucleon resonances → restoration of unitarity

$$
\Gamma(\vec{q}) = \Gamma_{N^*} \frac{\sqrt{s}}{m_{N^*}} \sum_i x_i \left(\frac{|\vec{q}_i|}{|\vec{q}_i^{N^*}|} \right)^{2l+1} \frac{D(|\vec{q}_i|)}{D(|\vec{q}_i^{N^*}|)},
$$

Extension from photoproduction to electroproduction

- Phenomenological form factors in the electromagnetic vertex
- Longitudinal couplings of *N*∗'s to γ [∗] (crucial at small *Q*²)

$$
\begin{array}{lcl} V^{EM}(N_{1/2}^*p\gamma) &=& -i\frac{g_5^{EM}}{(m_B+m_\rho)^2}\Gamma_\mp\,\gamma_\beta\,\mathcal{F}^\beta\,,\\[2mm] V^{EM}_\mu(N_{3/2}^*p\gamma) &=& -i\frac{g_3^{EM}}{m_B(m_B+m_\rho)^2}\gamma_5\Gamma_\mp\left(\not\!{q}\,g_{\mu\beta}-q_\beta\gamma_\mu\right)\,\mathcal{F}^\beta\,,\\[2mm] V^{EM}_{\mu\nu}(N_{5/2}^*p\gamma) &=& -i\frac{g_3^{EM}}{(2m_\rho)^5}\Gamma_\mp\left(q_\alpha\,q_\beta\,g_{\mu\nu}+q^2\,g_{\alpha\mu}g_{\beta\nu}-q_\alpha\,q_\nu\,g_{\beta\mu}-q_\beta\,q_\nu\,g_{\alpha\mu}\right)p^\alpha\,\mathcal{F}^\beta\,. \end{array}
$$

Fitting the data in the *K* ⁺Λ channel Minimization of χ^2 /n.d.f. with help of MINUIT library

Resonance selection

- *s* channel: spin-1/2, 3/2, and 5/2 *N*[∗] with mass < 2.5 GeV;
- *t* channel: *K* [∗](892), *K*1(1272)
- *u* channel: *Y* [∗](1/2) and *Y* [∗](3/2)

Free parameters (\approx 30 + 10):

- SU(3)_f: $-4.4 \leq g_{KAN}/\sqrt{4\pi} \leq -3.0$, $\frac{4.4 \leq 9KNN}{\sqrt{4\pi}} \leq -3.$
0.8 \leq *g_{KΣN}* / $\sqrt{4\pi} \leq 1.3$
- *K* ∗ 's have vector and tensor couplings
- spin-1/2 resonance \rightarrow 1 parameter: spin-3/2 and 5/2 resonance \rightarrow 2 parameters
- 2 cut-off parameters for the hff
- 1 longitudinal coupling for each *N* ∗
- 2 cut-off parameters for the emff of *K* ∗ and *K*¹

Experimental data

3383 *p*(γ, *K* ⁺)Λ data

- cross section for *W* < 2.355 GeV (CLAS 2005 & 2010; LEPS, Adelseck-Saghai)
- hyperon polarisation for *W* < 2.225 GeV (CLAS 2010)
- beam asymmetry (LEPS)

171 *p*(*e*, *e* ′*K* ⁺)Λ data

• σ*^U* , σ*^T* , σ*L*, σ*LT*′ , σ*^K*

Resulting models for the *K* ⁺Λ photo- and electroproduction

BS1 model $(\chi^2/n.d.f. = 1.64)$

- *S*₁₁(1535), *S*₁₁(1650), *F*₁₅(1680), *P*13(1720), *F*15(1860), *D*13(1875), *F*15(2000);
- *K* ∗ (892), *K*1(1272);
- $Λ(1520)$, $Λ(1800)$, $Λ(1890)$, $Σ(1660)$, Σ(1750), Σ(1940);
- multidipole form factor:

Λ*bgr* = 1.88 GeV, Λ*res* = 2.74 GeV

BS3 model $(x^2/n.d.f. = 1.74)$

- *S*₁₁(1535), *S*₁₁(1650), *F*₁₅(1680), *P*11(1710), *P*13(1720), *F*15(1860), *D*13(1875), *P*13(1900), *F*15(2000), *D*13(2120);
- *K* ∗ (892), *K*1(1272);
- Λ(1405), Λ(1600), Λ(1890), Σ(1670);
- dipole form factor:

$$
\Lambda_{bgr}=1.24\,\text{GeV},\,\Lambda_{res}=0.89\,\text{GeV}
$$

Transverse, $σ_τ$, and longitudinal, $σ_L$, cross sections of $p(e, e'K^+)$ Λ

Extension from photo- to electroproduction

- BS1: naive extension by adding em. form factors only
- BS3: em. form factors and longitudinal couplings of N[∗]'s to γ ^{*} added

New fits for *K*⁺Σ⁻ channel

 χ^2 minimization and overfitting

Fitting procedure with MINUIT library: **minimizing the** χ^2

$$
\chi^2 = \sum_{i=1}^N \frac{[d_i - \rho_i(c_1, \ldots, c_n)]^2}{\sigma_{d_i}^2},
$$

 (c_1, \ldots, c_n) - set of free parameters, (d_1, \ldots, d_N) - set of data points, p_i - theory, σ_{d_i} - error **Problem:** χ^2 minimization cannot prevent overfitting

Example: polynomial curve fitting

•
$$
f(x, w) = w_0 + w_1 x + w_2 x^2 + \cdots + w_k x^k
$$

• increasing order of polynomial *k* fits the data well...

...but gives only poor description of the function which generated them...

...and may fail to generalize to new data

Occam's razor (law of parsimony): simpler models should be preferred

New fits of $K^+\Sigma^-$ channel Least Absolute Shrinkage and Selection Operator (LASSO)

Remedy to the overfitting issue: regularization

• introduce a penalty term to the $\chi^2 \rightarrow$ penalization of large parameter values

$$
\chi_P^2 = \chi^2 + P(\lambda)
$$

• penalty term:
$$
P(\lambda) = \lambda^4 \sum_{i=1}^{N_{res}} |g_i|
$$

 λ - regularization parameter, g_i - resonances' couplings

- LASSO forces some of the parameters to zero \rightarrow selection of a subset of the fit parameters
- λ controls the strength of the penalty and thus the complexity of the model \rightarrow higher powers of λ allow fine sampling of the region of small λ

Information criteria:

- Akaike information criterion $AIC = 2n_i + \chi_P^2$
- Corrected Akaike information criterion $\text{AICc} = \text{AIC} + \frac{2n_i(n_i+1)}{N-n_i-1}$
- Bayesian information criterion $\mathsf{BIC} = n_i \ln(N) + \chi^2_{\mathsf{P}}$

 n_i - no. of parameters corresponding to λ_i

N - number of data points

Applying the information criteria – forward selection

- **1** start with the full model: parameters initialized within $\langle -1; +1 \rangle$; use λ_{max}
- **2** perform LASSO χ_P^2 minimization and compute IC
- in each run reduce λ and run LASSO with the values of the previous run as starting values
- \bullet repeat until λ_{\min} is reached

Optimal λ occurs at the minimum of the IC.

Fitting procedure

- resonance selection: motivation from previous analysis of *K* ⁺Λ channel
- non resonant part: Born terms and exchanges of *K* [∗] and *K*¹ and Σ∗'s
- resonant part: exchanges of *N*∗'s and ∆∗'s in the *s* channel
- around 600 data utilized to fit $<$ 25 parameters (new CLAS data on $\Sigma \rightarrow$ main motivation for this study)
- result with the smallest $\chi^2/\text{ndf} = 2.3 \rightarrow \text{fit}$ M (25 parameters, 14 resonances)
- LASSO applied at fit M: χ_P^2 /ndf = 3.4 \rightarrow fit L (17 parameters, 9 resonances)

Characteristics of models

- only one ∆ resonance introduced
- no hyperon resonances needed for reliable data description
- results in very good agreement with the cross-section and beam-asymmetry data
- fit L is very economical

Differential cross section in dependence on the photon lab energy

Differential cross section in dependence on the photon lab energy - fit L w/o individual resonances

Notation: N7: N(1720)3/2⁺, M4: N(2060)5/2⁻

Beam asymmetry in dependence on the kaon center-of-mass angle - fit L w/o individual resonances

LASSO in the *K* ⁺Λ channel

Selecting a subset of resonances ($SO\check{C}$ – D. Trnková)

Resonances in BS1 and BS1L:

- *^S*11(1535), *^S*11(1650), *^F*15(1680), *^P*13(1720), *F*15(1860), *D*13(1875), *F*15(2000);
- *K* [∗](892), *^K*¹ (1272);
- Λ(1520), Λ(1800), Λ(1890), Σ(1660), Σ(1750), Σ(1940)

Σ photoproduction channels

A systematic study

Data base (Prog. Part. Nucl. Phys. **111** (2020) 103752):

Strategy:

- **1** fit parameters in the $K^+\Sigma^0$ channel \rightarrow select a basic set of resonances
- 2 do fits in other channels \rightarrow modify the resonance set (if necessary)
- **3 OR** relate as many couplings as possible among the channels (using isospin symmetry, helicity amplitudes)

 \ldots $K^+\Sigma^0$ channel comprises more than 90% of the available data, shouldn't we consider all the other channels as predictions?

Models A (w/o LASSO) and B (w/ LASSO) ... submitted to PR C

Resonances in models A and B:

- *N*3(1535)1/2−, *N*4(1650)1/2−, *N*9(1680)5/2 +, *N*7(1720)3/2 ⁺, *P*5(1820)5/2 ⁺, *M*4(1860)1/2−, *P*4(1875)3/2−, *P*2(1900)3/2 ⁺, ∆(1900)3/2 +, *P*3(2000)5/2 ⁺, *M*2(2300)1/2 +;
- *K* [∗](892), *^K*¹ (1272);
- \bullet Λ (1890), Σ (1660).

New fits of $K^+\Sigma^0$ channel Models A (w/o LASSO) and B (w/ LASSO) – comparison with SAPHIR data

Refitting the model's parameters in the *K* ⁺Λ channel

Ridge regression and cross validation for suppressing hyperon couplings

Why refit?

- include recent measurements of polarization observables (PR C **93**, (2016) 065201)
- need to investigate more the role of hyperon resonances in *KY* photoproduction
- large values of hyperon couplings: ridge regression to suppress them during the fitting procedure

Ridge regularization

- penalized χ_P^2 : $\chi_P^2 = \chi^2 + \lambda^4 \sum_{i=1}^{n_A} g_i^2$, $(n_A = \text{no. of } Y \text{ couplings})$
- parameter values reduced but they are *not* reduced to zero

Cross validation (here 4-fold)

Dalibor Skoupil **[Model selection in elmag production of kaons](#page-0-0)** Corober 17, 2024 22/26

Relative percentage reduction of the resonance couplings

BS₂

- *g^j* values from the unregularized fitting
- \tilde{g}_i values after performing Ridge regularization

K ⁺Λ channel: beam asymmetry Σ

K ⁺Λ channel: target asymmetry *T*

Summary

New version of isobar model for the *K* ⁺Λ channel

• available for calculations online at:

```
http://www.ujf.cas.cz/en/departments/
department-of-theoretical-physics/isobar-model.html
```
...sadly, this is no longer true

Description extended from the *K* ⁺Λ channel to the *K* ⁺Σ[−] channel.

First fits on the $K^+\Sigma^0$ channel; analysis of other Σ photoproduction channels soon...

Regularization methods introduced as a remedy for overfitting and as model selection tools.

Outlook

- testing the models in the calculations for hypernucleus production (PR C 106, 044609 (2022), PR C 108, 024615 (2023))
- performing an analysis of $Σ$ photoproduction channels
- extending the analysis of electroproduction beyond $Q^2 = 1 \text{ GeV}^2$
- studying the production of \equiv hypernuclei
- preparing amplitude for η' photoproduction

Thank you for your attention!