### JLab Hypernuclear Collaboration Meeting Status of new water Cherenkov detector

December 8, 2021

Shintaro Nagano Tohoku Univ., Japan



- Background
- Outline of the new Water Cherenkov detector being produced
- Performance evaluation

   Number of photoelectrons of each detector
   Time dependence on NPE

   Summary

#### Background of the study

HKS setup



#### WC detector used in E05-115



# **Outline of the new Water Cherenkov being produced**

#### Single segment shape of WC detector



#### Requirements

- •The shape is the same as the WC used in E05-115.
- •90%K<sup>+</sup>survival ratio
  •93%Proton suppression

•Number of photoelectrons :120 or more

#### Photos making WC



#### **Completed WC detector**



### Setup of cosmic ray test

The number of photoelectrons of WC detectors were evaluated with cosmic rays.



#### NPE of each detector

NPE of each detector



- •The number of photoelectrons was about 180 to 200.
- Number of photoelectrons of the new detector was about 1.6 times higher than that used for E05-115.

# **Time dependence on NPE**

NPE was evaluated 4 months using cosmic rays with a WC detector.



- •NPE is expected to be decreased about 91% in 4 months.
- •By refreshing de-ionized water and changing the way putting on the Teflon sheet, the decrease in NPE can be suppressed.



# Summary

- •The WC detector in the previous experiment broke, so a new WC detector is needed.
- •Mass-production of the new WC detectors and evaluating their performance.
- •The NPE of the new WC detector is 180-200, which is 1.6 times that of E05-115.
- •NPE decreases to 91% after 4 months of use.
- •By refreshing de-ionized water and changing the way putting on the Teflon sheet, the decrease in NPE can be suppressed.