Jlab Hypernuclear Collaboration Meeting

07 Dec. 2021

Opening & Introduction

SATOSHI N. NAKAMURA TOHOKU UNIVERSITY

COVID-19 prevents our on-site meeting at JLab.

No visit to JLab for us after Feb. 2020.

We have more frequent on-line meetings now.

It is time to move forward !

New method to study nuclear shape $^{27}_{\Lambda}Mg$

Second Session 7th : Hall A/C current and future Preparation status of Experiment

First Session 8th : nn A analysis

07 Dec. 2021

Jlab Hypernuclear Collaboration Meeting

Physics Overview of new experiment (A=40, 48) E12-15-008

SATOSHI N. NAKAMURA TOHOKU UNIVERSITY

Messages from PAC43

Spectroscopy of ${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K are most compelling physics. Stronger theoretical connection between Λ nn and two M_{sun} NS.

2nd JLab Hypernuclear Workshop (14,15 March 2016)

Based on discussions there : Re-submitted C15-12-008 proposal to PAC44 and approved with grade-A.

Neutron star and strange hadronic matter

Sym. Nucl. Matter : Limit for size (due to Coulomb force) Asym. Nucl. Matter : Neutron Stars, Strange Hadronic Matter

ESC08c + 3B/4B RF : G-Matrix Calc. by Yamamoto et al., PRC 90 (2014) 045805. Variational Meth. + AV18+UIX by Togashi et al., PRC 93 (2016) 035808

3BF recovers stiffness

D.Gerstung et al., Eur. Phys. J. A (2020) 56:175.

A Single Particle Energies of A Hypernuclei by Various Calculations

D.Lonardoni and F. Pederiva, arXiv:1711.07521.

J.Haidenbauer, I.Vidana, EPJA (2020) 56:55.

ChEFT

Mass dependence of B_{Λ}

Nuclear Matter $(A = \infty)$

Recent progress about $\Lambda N CSB$

JLab E05-115 : First B_{Λ} measurement of ${}^{7}_{\Lambda}He$, HKS-Collaboration

 $^{7}_{\Lambda}$ He, $^{7}_{\Lambda}$ Li*, $^{7}_{\Lambda}$ Be

PRL 110, 012502 (2013) 2nd paper submitted to PRC arXiv 1606.09157

CSB for A=7, T=1 system is small

Trigger re-measurements of CSB for A=4 iso-doublet ${}^{4}{}_{\Lambda}H$, ${}^{4}{}_{\Lambda}He$

Originally proposed at JLab : PR-10-001, PR-12-13-002 Experimentally performed at MAMI-C

⁴_{Λ}H g.s. measurement by decay π spectroscopy

Gamma-ray measurement at J-PARC E13

Precise determination of $Ex(1^+) \stackrel{4}{}_{\Lambda}He$ with Hyperball-J

Current status of CSB for A=4 hypernuclei ΛN interaction has large isospin dependence.

NS EOS with hyperon and 3BRF

So far, NO experimental inputs for iso-spin dependence in mid-heavy HY

Mid-heavy data from (π, K) exp.

P.H.Pile et al. PRL 20 (1991) 2585.

H.Hotchi et al. PRC 64 (2001) 044302.

Expected spectrum for ${}^{40}_{\Lambda}$ K

0.3 MeV (FHWM) resolution assumed. P. Bydzovski et al. NPA881 (2012) 199.

$(e, e'K^+)$ reaction

Reliable absolute energy calibration. Excellent energy resolution. <100 keV accuracy Determination of B_{Λ}

$\Lambda nn/\Lambda np$ dependence of B_{Λ}

Introduced ANN potential

 $\overline{\boldsymbol{\tau}_i} \cdot \overline{\boldsymbol{\tau}_j} = -3P^{\mathrm{T}=0} + \mathbf{C}_{\mathrm{T}} P^{\mathrm{T}=1}$

 C_T gauges strength and sign of Λ nn to Λ np 3B force.

$\Lambda nn/\Lambda np$ dependence of B_{Λ}

Could be determined with an accuracy of <100keV at JLab

Isotopically enriched targets

110 mg, Φ1.27cm, 0.5mm thick (79 mg/cm²) ⁴⁰Ca (99.96%) and ⁴⁸Ca (95.99%) targets at JLab.

	Li	С	Ca	Pb
Melting Point ($^{\circ}C$)	181	3642	842	323
Heat Cond. (W/(m*K))	85	120	201	35

HKS + HES + PCS in Hall-A

2020/3/13 @ TOKIN (SENDAI)

New Pair Charge Sep. Mag.

HKS+HES+PCS@Hall-C

Requested Beamtime

	Beam Current (µA)	Target Thick (mg/cm ²)	Assumed CS (nb/sr)	Expected Yield(/h)	Beam Time (h) For 200ev.	BG (/MeV/ h) for 250MH z	S/N
${}^{40}_{\Lambda}K$	50	50	10	0.9	230	0.43	4.0
$^{48}_{\Lambda}K$	50	50	10	0.7	278	0.42	3.5
Calib.					147		
Total					655		

$655 h \approx 28 PAC days$

Absolute energy calibration is possible with $p(e,e'K^+)\Lambda$, Σ^0 . Not for (π,K) or (K,π) due to lack of neutron target.

High resolution and reliable calibration are keys. precision accuracy

Summary

PAC43 suggested that measurements of $\frac{40}{\Lambda}$ K, $\frac{48}{\Lambda}$ K proposal should be re-submitted with more theoretical works to bridge Λ NN interaction and hyperon puzzle.

Theoretical efforts with AFDMC and AMD are in progress to predict B_A reliable medium heavy hypernuclei. Based on these efforts, ANN interaction model can be applied to NS to solve the hyperon puzzle.

Recent experiments on ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He show Charge Symmetry for Λ N is Broken for A=4. Isospin dependence for medium-heavy hypernuclei should be experimentally studied.

Based on established techniques and spectrometers at JLab, measurement of B_{Λ} for ${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K with a precision of <100 keV can be achievable with a reasonable beamtime (28 PAC days including calibrations).

Will provide the first data for isospin dependence of Λ NN force.