Workshop of Electro- and Photoproduction of Hypernuclei and Related Topics 2024 Oct. 15 – 18, 2024

Λ hypernuclear Spectroscopy to Study P-shell Charge Symmetry Breaking at J-PARC (E94 Experiment)

D. Watanabe (Tohoku University) for the S-2S Collaboration Oct. 17, 2024

Contents

- Outlook of single Λ hypernuclear experiments using the S-2S spectrometer(J-PARC E94)
- Experimental setup
- Background events and trigger rate
 - Trigger rate measurement
- Summary

Λ hypernuclear experiments using S-2S spectrometer (J-PARC E94)

Physics motivation

Charge Symmetry Breaking (CSB) study ΛN interaction
 → Provide high precision data for p-shell systems(¹⁰_ΛB, ¹²_ΛC)

Method & feature

- Missing mass spectroscopy via (π^+, K^+)
- Measure Λ binding energy of $^7_\Lambda Li$, $^{10}_\Lambda B$, $^{12}_\Lambda C$
- Energy resolution : 1 MeV (FWHM)
- Energy calibration : ${}^7_{\Lambda}$ Li (alternative calibration data for ${}^{12}_{\Lambda}$ C)
- Total accuracy of B_{Λ} : $|\Delta B_{\Lambda}^{\text{total}}| = 100 \text{ keV}$

8 K⁺

 $^{10}_{\Lambda}E$

Charge symmetry breaking in ΛN interaction

T. Gogami et al., PRC94, 021302(R) (2016)

- p-p, n-n interactions have charge symmetry
- Charge symmetry is broken in ΛN interaction(CSB)
 - Large CSB in A=4 system
 - Further investigation is needed for $A \ge 7$ hypernuclei

Physics motivation : high precision measurement of $^{10}_{\Lambda}B$

Calibration source $^{7}_{\Lambda}$ Li

• ${}^{7}_{\Lambda}\text{Li} \frac{1}{2}^{+}$ and $\frac{5}{2}^{+}$ states are used for calibration source • B_{Λ} of ${}^{7}_{\Lambda}$ Li $\frac{1}{2}^{+}$ state :5.58 \pm 0.03^{stat.} MeV Emulsion experiment ~160 events • B_{Λ} of ${}_{\Lambda}^{7}$ Li $\frac{5}{2}^{+}$ state : 3.53 \pm 0.03^{stat.} MeV (Systematic error : 0.04 - 0.05 MeV)

D. H. Davis, NPA 754 3c–13c (2005).
K. Tanida et al., PRL 86, 10 (2001).
M. Ukai et al., PRC 73, 012501(R) (2006).

Accuracy of
$$B_{\Lambda}$$
: $\left|\Delta B_{\Lambda}^{\text{total}}\right| = 100 \text{ keV}$

Missing mass spectroscopy of Λ hypernucleus (J-PARC E94)

$$M_{\rm H} = \sqrt{E_{\rm H}^2 - (\vec{p}_{\rm H})^2} = \sqrt{(E_{\pi} + M_{\rm T} - E_{\rm K})^2 - (\vec{p}_{\pi} - \vec{p}_{\rm K})^2}$$
$$B_{\Lambda} = M_{\rm core} + M_{\Lambda} - M_{\rm H}$$

Obtain B_{Λ} from the measurement of $\overrightarrow{p_{\pi}}$ and $\overrightarrow{p_{K}}$

→ Introduce new detector (LC) that Lucite as radiation medium

2024/10/17

Measurement of trigger rate(@K1.8 + S-2S)

Trigger rate(estimated from real data)

Data summary (2024)

- 1.05 GeV/ $c \pi^+$ (0.85 ~ 0.88 M /spill)
- S-2S central momentum : 0.72 GeV/c
- Without target

condition	Trigger rate /(k/spill) @ 5 M /spill
TOF	332
TOF⊗WC	242
$TOF \otimes WC \otimes \overline{AC}$	16.3

- 16.3 k /spill(TOF \otimes WC \otimes \overline{AC}) > 10 k / spill (DAQ requirement)
- To do / On going
 - Matrix trigger of TOF and WC(LC)
 - Particle identification and investigate their origin

Summary J-PARC E94 experiment

• Provide high precision data on the CSB in the AN interaction Aim for 100 keV accuracy measurement in p-shell systems $\binom{10}{\Lambda}B$, $\binom{12}{\Lambda}C$

Outlook and setup of J-PARC E94

- High precision Λ hypernuclear experiment via (π^+, K^+) reaction
- Modification of Cherenkov detector (water→lucite)
- Aim to complete preparations by 2025

Analysis of background data

- Obtain 1.05 GeV/c π^+ data (in the J-PARC E70 beamtime)
- Trigger rate : 16.3 k/spill @ 5 M π^+ /spill(TOF \otimes WC $\otimes \overline{AC}$) > 10 k/spill (DAQ requirement)
- To do / On going
 - Particle identification and investigate their origin