

Hypernuclear Investigation with Electromagnetic Interaction (HIEI2022) Mar. 22, 2022

Reaction and structure of hypernuclei

Atsushi UMEYA (Nippon Inst. of Tech.)

collaborated with

Toshio MOTOBA (RCNP, Osaka Univ. / Osaka E-C Univ.)

Kazunori ITONAGA (Miyazaki Univ. / Gifu Univ.)

Introduction

- *p*-shell nuclei and hypernuclei provide a variety of interesting phenomena (shell-, cluster-, and coexistent characters), depending on *E_x* and mass.
- High-precision experiments in hypernuclear spectroscopy are in progress.
- Detailed look in Jlab (*e*, *e'K*⁺) spectroscopic data requires an extended description with multi-configuration parity-mixing mediated by hyperon.
- We have calculated the production cross sections for *p*-shell hypernuclei by using the extended shell model.
- We focus on the *p*-state Λ hyperon in the *p*-shell Λ hypernuclei.

Mar. 22, 2022

Recent $(e, e'K^+)$ reaction experiments done at the Jefferson Lab

Recent experimental result

T. Gogami et al., PRC93, 034314 (2016)

Shell-model prediction

- T. Motoba et al., PTPS117, 123 (1994)
- Core nucleus calculated with conventional *p*-shell model
- A in *s*-orbit

This experiment has confirmed the major peaks (#1, #2, #3, #4) predicted in DWIA by emplying the Λ particle in *s*-orbit coupled with the nuclear core states confined within the *p*-shell configuration.

However, it is interesting to observe extra strengths at $E_{\Lambda} = 0$ MeV excitation (a).

The extension of the model space is necessary and interesting challenge in view of the present hypernuclear spectroscopy.

Mar. 22, 2022

Framework of extended shell model ($^{10}_{\Lambda}$ Be case)

In the conventional shell model, only natural-parity nuclaer-core states (J_{core}^-) are taken into account. A particle is in the 0s orbit in ${}^{10}_{\Lambda}\text{Be}(J^-)$.

In ${}^{10}_{\Lambda}$ Be(J^+), the energy difference between $\Lambda(0s)$ and $\Lambda(0p)$ is $1\hbar\omega$, and the energy difference between 9 Be(J^-_{core}) and 9 Be(J^+_{core}) is $1\hbar\omega$.

By ΛN interaction, natural-parity nuclaer-core configurations and unnatural-parity nuclaer-core configurations can be mixed.

Mar. 22, 2022

Results : Cross sections of the ${}^{10}B(\gamma, K^+) {}^{10}_{\Lambda}Be$ reaction

Recent experimental result T. Gogami *et al.*, PRC93, 034314 (2016)

For hypernucleus ${}^{10}_{\Lambda}$ Be (1) 1*p*-1*h* (1 $\hbar\omega$) core excitation (2) Configration mixing by ΛN int. are taken into account

DWIA calculation by using Saclay-Lyon model A

Our new calculation reproduces the four major peaks (#1, #2, #3, #4).

Our new calculation explains the
¹⁰ new bump (a) as a sum of cross sections of some J⁺ states.

Mar. 22, 2022

Splitting of *p*-state in the deformed nuclei

The bump in the cross sections of ${}^{10}_{\Lambda}$ Be will be explained by the splitting of p^{Λ} -state in the deformed core-nucleus.

Deformation parameter δ

S. G. Nilsson, Mat. Fis. Medd. Dan. Vid. Selsk. 29 (1955) No. 16

Eigenvalues Ω of *z*-component of angular momentum operator and parities are good quantum numbers in the Nilsson diagram.

$$p_{3/2} \to \Omega^{\pi} = 1/2^{-}, 3/2^{-}$$

Mar. 22, 2022

$[p^{-1}p^{\Lambda}_{\perp}]$ and $[p^{-1}p^{\Lambda}_{\prime\prime}]$ states of ${}^{9}_{\Lambda}$ Be

In ${}^{9}_{\Lambda}$ Be, it is well known that the p_{Λ} -state splits into two orbital states expressed by p_{\perp} and p_{\parallel} , which is due to the strong coupling with nuclear core deformation having the α - α structure. T. Motoba *et al.*, PTPS81, 42 (1985) R. H. Dalitz, A. Gal, PRL36, 362 (1976); AP131, 314 (1981)

Mar. 22, 2022

Results : Comparison to the cluster model – Cross section –

Results : Cross sections of the ¹⁰B (K^-, π^-) ¹⁰_AB reaction (1)

In the (K^-, π^-) reaction, the large peak at $E_{\Lambda} = 4.4$ MeV is a *p*-substitutional state via the $p_{3/2}^N \rightarrow p_{3/2}^{\Lambda}$, which is strongly excited by recoilless reaction.

The small peak at $E_{\Lambda} = 0 \text{ MeV}$ corresponds to the new bump and is explained as a mixture of s^{Λ} and p^{Λ} states.

The large peak at $E_{\Lambda} = 4.4 \text{ MeV}$ in ${}^{10}_{\Lambda}\text{Be}$ corresponds to the $[p^{-1}p_{\perp}^{\Lambda}]$ state in ${}^{9}_{\Lambda}\text{Be}$ (⁹Be analog state).

The small peak at $E_{\Lambda} = 0 \text{ MeV}$ in ${}^{10}_{\Lambda}\text{Be}$ corresponds to the $[p^{-1}p^{\Lambda}_{//}]$ state in ${}^{9}_{\Lambda}\text{Be}$.

Results : Cross sections of the ¹⁰B (K^-, π^-) ¹⁰_AB reaction (2)

CONCLUDE:

 $\alpha \alpha$ -like core deformation causes splitting of p^{Λ} -states, then lowenergy $p_{//}^{\Lambda}$ can mix with s^{Λ} -states.

 $[{}^{9}\text{Be}(J^{-}) \times \Lambda(p_{//})] + [{}^{9}\text{Be}(J^{+}) \times \Lambda(s)]$

These parity-mixed wave functions at $E_{\Lambda} = 0$ MeV can explain the extra peak #a. HIE12022

Mar. 22, 2022

HIE12022

Mar. 22, 2022

Mar. 22, 2022

Results : Cross sections of the ¹¹B (γ , K^+) ¹¹Be reaction (1)

Mar. 22, 2022

Results : Energy of $p_{\prime\prime}$ -state

The p^{Λ} -state splits into p_{\perp} - and $p_{//}$ -states due to the strong coupling with nuclear core deformation.

In ${}^{9}_{\Lambda}$ Be, the enregy of $p_{//}^{\Lambda}$ -state comes down to $E_x \approx 7$ MeV from the Λ single-particle energy difference $\varepsilon_p^{\Lambda} - \varepsilon_s^{\Lambda} \approx 11$ MeV.

The bump at $E_x \approx 8 \text{ MeV}$ in the cross sections of ${}^{10}_{\Lambda}\text{Be}$ corresponds to the $p^{\Lambda}_{//}$ -state.

In the cross sections of ${}^{11}_{\Lambda}$ B, the small 5/2⁻ peak at $E_x \approx 9$ MeV corresponds to the $p^{\Lambda}_{\prime\prime}$ -state.

The energy splitting between p_{\perp} - and $p_{//}$ states in ${}^{11}_{\Lambda}B$ is smaller than that in ${}^{9}_{\Lambda}Be$, which is due to the small deformation of the nuclear core in ${}^{11}_{\Lambda}B$.

Summary

We have calculated the energy levels and the production cross sections for *p*-shell hypernuclei by using the extended shell model.

- Strong coupling between *p*-state Λ and core deformation is realized in ${}^{9,10,11}_{\Lambda}\text{Be}$ and ${}^{10,11}_{\Lambda}\text{B}$.
- In these nuclei, p^{Λ} -state splits into $p^{\Lambda}_{/\!/}$ and p^{Λ}_{\perp} .
- In ${}^{10}_{\Lambda}$ Be, the lower $p_{//}^{\Lambda}$ comes down in energy and $[{}^{9}\text{Be}(J^{-}) \times \Lambda(p_{//})]$ couples easily with $[{}^{9}\text{Be}(J^{+}) \times \Lambda(s)]$.
- Such new type wave functions should appear in ${}^{9,10,11}_{\Lambda}Be$ and ${}^{10,11}_{\Lambda}B$ due to the core deformation.

The finding of peak #a in ¹⁰B $(e, e'K^+)$ ¹⁰_ABe is a novel evidence for genuine hypernuclear wave function with parity-mixing realized in "deformed" hypernuclei.