Project: Hall C Solid targets for $\mathrm{X}>1$, CAFE, EMC etc.
Tittle: Solid Target Thicknesses for Fall 2022
Document Number: TGT-CALC-22-035
Revision: 0
Author: Dave Meekins
Applicable Codes and Standards
N/A
Reference:
Leo: Techniques for Nuclear and Particle Physics Experiments
Reference Drawing(s):

Description:
Solid target thicknesses determined from measurements made in EEL and ORNL. These solid targets are in the general shape of a puck. Assays provided by American Elements, Alpha, and ORNL. Masses when measured at JLAB have uncertainty of 0.5 mg .
Uncertainties on diameter (measured at at least 2 locations) are conservatively estimated at 0.02 mm . Note not all targets are installed on ladder 1 . Lithium targets are not listed here.

Boron Carbide:

B4C-10 and B4C-11 supplied by American Elements
B4C-10:
Assay 96.6\% Boron-10
Chemical purity 99.99\%

$$
\begin{aligned}
& d:=12.57 \cdot \mathrm{~mm} \\
& m:=0.7152 \cdot g m \\
& \delta d:=0.02 \cdot m m \\
& \delta m:=0.0005 \cdot g m \\
& A:=\frac{\pi}{4} \cdot d^{2}=1.241 \mathrm{~cm}^{2} \\
& \rho t:=\frac{m}{A}=0.576 \frac{\mathrm{gm}}{\mathrm{~cm}^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2} \\
& \delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.002 \frac{g m}{c m^{2}} \\
& t:=2.45 \cdot m m \\
& \rho:=\frac{\rho t}{t}=2.352 \frac{\mathrm{gm}}{\mathrm{~cm}^{3}} \\
& \text { diameter of puck } \\
& \text { mass of puck } \\
& \text { uncertainty in diameter } \\
& \text { uncertainty in mass } \\
& \text { area of puck } \\
& \text { areal density of target } \\
& \text { uncertainty in area } \\
& \text { uncertainty in areal density } \\
& \text { measured thickness } \\
& \text { density }
\end{aligned}
$$

B4C-10:
Assay 99.8\% Boron-11
Chemical purity 99.99\%

$$
\begin{aligned}
& \text { d: }:=12.58 \cdot \mathrm{~mm} \\
& m:=0.7867 \cdot g m \\
& \delta d:=0.02 \cdot \mathrm{~mm} \\
& \delta m:=0.0005 \cdot g m \\
& \text { (A) }:=\frac{\pi}{4} \cdot d^{2}=1.243 \mathrm{~cm}^{2} \\
& \rho t:=\frac{m}{A}=0.633 \frac{\mathrm{gm}}{\mathrm{~cm}^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2} \\
& \delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.002 \frac{g m}{c m^{2}} \\
& t:=2.6 \cdot \mathrm{~mm} \\
& \rho:=\frac{\rho t}{t}=2.434 \frac{\mathrm{gm}}{\mathrm{~cm}^{3}} \\
& \text { diameter of puck } \\
& \text { mass of puck } \\
& \text { uncertainty in diameter } \\
& \text { uncertainty in mass } \\
& \text { area of puck } \\
& \text { areal density of target } \\
& \text { uncertainty in area } \\
& \text { uncertainty in areal density } \\
& \text { measured thickness } \\
& \text { density }
\end{aligned}
$$

Copper:
Supplied by GoodFellow 99.999\% pure

$$
\begin{aligned}
& \text { d: }=12.75 \cdot \mathrm{~mm} \\
& m:=1.2032 \cdot g m \\
& \delta d:=0.02 \cdot \mathrm{~mm} \\
& \delta m:=0.0005 \cdot g m \\
& \text { (A): }=\frac{\pi}{4} \cdot d^{2}=1.277 \mathrm{~cm}^{2} \\
& \text { صt: }=\frac{\mathrm{m}}{A}=0.942 \frac{\mathrm{gm}}{\mathrm{~cm}^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2} \\
& \delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.003 \frac{g m}{c m^{2}} \\
& \text { diameter of puck } \\
& \text { mass of puck } \\
& \text { uncertainty in diameter } \\
& \text { uncertainty in mass } \\
& \text { area of puck } \\
& \text { areal density of target } \\
& \text { uncertainty in area } \\
& \text { uncertainty in areal density }
\end{aligned}
$$

Calcium 48:

The Ca48 target was fabricated from material left from an emergency fabrication for CREX after a beam missteering event caused the original target to melt and alloy with the copper heat sink. The batch/lot for this material from ORNL is 900242 . The isotopic enrichment of Ca48 is 90.04%.

$$
\begin{aligned}
& d:=12.775 \cdot \mathrm{~mm} \\
& m:=1.3466 \cdot \mathrm{gm} \\
& \delta d:=0.02 \cdot \mathrm{~mm} \\
& \delta m:=0.0005 \cdot g m \\
& \text { (A): }=\frac{\pi}{4} \cdot d^{2}=1.282 \mathrm{~cm}^{2} \\
& \text { ๑t }:=\frac{m}{A}=1.051 \frac{\mathrm{gm}}{\mathrm{~cm}^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2} \\
& \delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.003 \frac{g m}{c m^{2}} \\
& \text { diameter of puck } \\
& \text { mass of puck } \\
& \text { uncertainty in diameter } \\
& \text { uncertainty in mass } \\
& \text { area of puck } \\
& \text { areal density of target } \\
& \text { uncertainty in area } \\
& \text { uncertainty in areal density }
\end{aligned}
$$

Calcium 40:

The Ca40 target was fabricated at ORNL batch number is 118740. Enrichment is 99.965\%.

$$
\begin{aligned}
& \text { d }:=12.71 \cdot \mathrm{~mm} \\
& m:=0.9959 \cdot g m \\
& \delta d:=0.02 \cdot \mathrm{~mm} \\
& \delta m:=0.001 \cdot g m \\
& \text { (A) }:=\frac{\pi}{4} \cdot d^{2}=1.269 \mathrm{~cm}^{2} \\
& \rho t:=\frac{m}{A}=0.785 \frac{\mathrm{gm}}{\mathrm{~cm}^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2} \\
& \delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.003 \frac{g m}{c m^{2}} \\
& \text { diameter of puck } \\
& \text { mass of puck } \\
& \text { uncertainty in diameter } \\
& \text { uncertainty in mass } \\
& \text { area of puck } \\
& \text { areal density of target } \\
& \text { uncertainty in area } \\
& \text { uncertainty in areal density }
\end{aligned}
$$

Note: mass and diameter of puck determined at ORNL

Iron 54:
The iron 54 target was fabricated at ORNL. The batch is 166644. The enrichment 97.68\%.

d: $:=12.69 \cdot \mathrm{~mm}$
$m:=0.4645 \cdot g m$
$\delta d:=0.02 \cdot \mathrm{~mm}$
$\delta m:=0.0005 \cdot g m$
(A) $:=\frac{\pi}{4} \cdot d^{2}=1.265 \mathrm{~cm}^{2}$
$\rho t:=\frac{m}{A}=0.367 \frac{\mathrm{gm}}{\mathrm{cm}^{2}}$
$\delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2}$
$\delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.001 \frac{g m}{\mathrm{~cm}^{2}}$
diameter of puck mass of puck
uncertainty in diameter uncertainty in mass area of puck
areal density of target
uncertainty in area
uncertainty in areal density

Note: mass and diameter of puck determined at ORNL

Aluminum:
Aluminum is from American Elements 99.9\% pure.

$$
\begin{aligned}
& \text { d }:=12.73 \cdot \mathrm{~mm} \\
& m:=0.5854 \cdot g m \\
& \delta d:=0.02 \cdot \mathrm{~mm} \\
& \delta m:=0.0005 \cdot g m \\
& \text { (A): }=\frac{\pi}{4} \cdot d^{2}=1.273 \mathrm{~cm}^{2} \\
& \rho t:=\frac{m}{A}=0.46 \frac{\mathrm{gm}}{\mathrm{~cm}^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2} \\
& \delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.001 \frac{g m}{\mathrm{~cm}^{2}} \\
& \text { diameter of puck } \\
& \text { mass of puck } \\
& \text { uncertainty in diameter } \\
& \text { uncertainty in mass } \\
& \text { area of puck } \\
& \text { areal density of target } \\
& \text { uncertainty in area } \\
& \text { uncertainty in areal density }
\end{aligned}
$$

Titanium

Target from American Elements. 99.99\% pure.

$$
\begin{aligned}
& \text { d }:=12.73 \cdot \mathrm{~mm} \\
& \text { m:=0.3747•gm } \\
& \delta d:=0.02 \cdot \mathrm{~mm} \\
& \delta m:=0.0005 \cdot g m \\
& \text { (A): }=\frac{\pi}{4} \cdot d^{2}=1.273 \mathrm{~cm}^{2} \\
& \text { อt }:=\frac{m}{A}=0.294 \frac{\mathrm{gm}}{\mathrm{~cm}^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2} \\
& \delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.001 \frac{g m}{c m^{2}} \\
& \text { diameter of puck } \\
& \text { mass of puck } \\
& \text { uncertainty in diameter } \\
& \text { uncertainty in mass } \\
& \text { area of puck } \\
& \text { areal density of target } \\
& \text { uncertainty in area } \\
& \text { uncertainty in areal density }
\end{aligned}
$$

Beryllium:

Be target from AE 99.5\% pure

$$
\begin{aligned}
& \text { d: }:=12.49 \cdot \mathrm{~mm} \\
& m:=1.2077 \cdot g m \\
& \delta d:=0.02 \cdot \mathrm{~mm} \\
& \delta m:=0.0005 \cdot g m \\
& \text { (A) }:=\frac{\pi}{4} \cdot d^{2}=1.225 \mathrm{~cm}^{2} \\
& \text { صt }:=\frac{m}{A}=0.986 \frac{\mathrm{gm}}{\mathrm{~cm}^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2} \\
& \delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.003 \frac{g m}{c m^{2}} \\
& \text { diameter of puck } \\
& \text { mass of puck } \\
& \text { uncertainty in diameter } \\
& \text { uncertainty in mass } \\
& \text { area of puck } \\
& \text { areal density of target } \\
& \text { uncertainty in area } \\
& \text { uncertainty in areal density }
\end{aligned}
$$

Carbon:
From AE 99.99\% pure
d $:=12.63 \cdot \mathrm{~mm}$
$m:=0.7188 \cdot g m$
$\delta d:=0.02 \cdot \mathrm{~mm}$
$\delta m:=0.0005 \cdot g m$
(A): $=\frac{\pi}{4} \cdot d^{2}=1.253 \mathrm{~cm}^{2}$
$\rho t:=\frac{m}{A}=0.574 \frac{\mathrm{gm}}{\mathrm{cm}^{2}}$
$\delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2}$
$\delta \rho t:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=0.002 \frac{g m}{\mathrm{~cm}^{2}}$
diameter of puck mass of puck uncertainty in diameter uncertainty in mass area of puck areal density of target
uncertainty in area
uncertainty in areal density

Silver:
From AE 99.9\% pure

Other solid targets:
Other targets were measured and installed for the previous configuration and documented in TGT-RPT-22-001. There values are listed here.

Units are $\mathrm{g} / \mathrm{cm}^{\wedge} 2$

- Ni64 $0.2607+/-0.0005$
- Ni58 0.2408 +/- 0.0004
- Au $0.4047+/-0.0006$
- Sn $0.5462+/-0.0006$

Thorium Target:
Thorium was supplied by GoodFellow and consists of 5 foils punched from the same sheet of material which is nominally 0.05 mm thick and 99.5% pure. See log entry 4011074 for more details.

Foil 1

$$
\begin{aligned}
& \text { dd:= } 12.31 \cdot m m \\
& m:=0.0809 \cdot g m \\
& \text { (dd }:=0.03 \cdot m m \\
& \delta m:=0.0005 \cdot g m \\
& A A:=\frac{\pi}{4} \cdot d^{2}=1.19 \mathrm{~cm}^{2} \\
& \rho t_{1}:=\frac{m}{A}=0.068 \frac{g m}{c m^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.006 \mathrm{~cm}^{2} \\
& \delta \rho t_{1}:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=\left(5.35 \cdot 10^{-4}\right) \frac{\mathrm{gm}}{\mathrm{~cm}^{2}}
\end{aligned}
$$

diameter of puck mass of puck uncertainty in diameter uncertainty in mass area of puck
areal density of target
uncertainty in area uncertainty in areal density

Foil 2

$$
\begin{aligned}
& \text { d }:=12.38 \cdot \mathrm{~mm} \\
& m:=0.0830 \cdot g m \\
& \delta d:=0.05 \cdot \mathrm{~mm} \\
& \delta m:=0.0005 \cdot g m \\
& \text { (A) }:=\frac{\pi}{4} \cdot d^{2}=1.204 \mathrm{~cm}^{2} \\
& \text { diameter of puck } \\
& \text { mass of puck } \\
& \text { uncertainty in diameter } \\
& \text { uncertainty in mass } \\
& \text { area of puck }
\end{aligned}
$$

$$
\begin{array}{l|l|}
\rho t_{2}:=\frac{m}{A}=0.069 \frac{g m}{\mathrm{~cm}^{2}} & \text { areal density of target } \\
\hline \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.01 \mathrm{~cm}^{2} & \text { uncertainty in area } \\
\delta \rho t_{2}:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=\left(6.948 \cdot 10^{-4}\right) \frac{g m}{\mathrm{~cm}^{2}} & \text { uncertainty in areal density }
\end{array}
$$

diameter of puck
mass of puck uncertainty in diameter uncertainty in mass area of puck areal density of target uncertainty in area uncertainty in areal density

Foil 4

$$
\begin{aligned}
& d:=12.31 \cdot \mathrm{~mm} \\
& m:=0.0760 \cdot \mathrm{gm} \\
& \delta d:=0.02 \cdot \mathrm{~mm}
\end{aligned}
$$

diameter of puck mass of puck uncertainty in diameter
$\delta m:=0.0005 \cdot g m$
(A: $:=\frac{\pi}{4} \cdot d^{2}=1.19 \mathrm{~cm}^{2}$
$\rho t_{4}:=\frac{\mathrm{m}}{A}=0.064 \frac{\mathrm{gm}}{\mathrm{cm}^{2}}$
$\delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2}$
$\delta \rho t_{4}:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=\left(4.686 \cdot 10^{-4}\right) \frac{g m}{c m^{2}}$

Foil 5

$$
\begin{aligned}
& d:=12.23 \cdot m m \\
& m:=0.0809 \cdot g m \\
& \delta d:=0.02 \cdot \mathrm{~mm} \\
& \delta m:=0.0005 \cdot g m \\
& \left(A:=\frac{\pi}{4} \cdot d^{2}=1.175 \mathrm{~cm}^{2}\right. \\
& \rho t_{5}:=\frac{m}{A}=0.069 \frac{g m}{c^{2}} \\
& \delta A:=\frac{\pi}{2} \cdot d \cdot \delta d=0.004 \mathrm{~cm}^{2} \\
& \delta \rho t_{5}:=\left(\left(\frac{\delta m}{A}\right)^{2}+\left(\frac{m}{A^{2}} \cdot \delta A\right)^{2}\right)^{\frac{1}{2}}=\left(4.815 \cdot 10^{-4}\right) \frac{g m}{\mathrm{~cm}^{2}}
\end{aligned}
$$

uncertainty in mass area of puck
areal density of target
uncertainty in area uncertainty in areal density
diameter of puck mass of puck uncertainty in diameter uncertainty in mass area of puck
areal density of target
uncertainty in area
uncertainty in areal density

Foil 7

total thickness:
$\rho t:=\rho t_{1}+\rho t_{2}+\rho t_{3}+\rho t_{4}+\rho t_{5}+\rho t_{7}=0.409 \frac{g m}{\mathrm{~cm}^{2}}$
$\delta \rho t:=\left(\delta \rho t_{1}{ }^{2}+\delta \rho t_{2}{ }^{2}+\delta \rho t_{3}{ }^{2}+\delta \rho t_{4}{ }^{2}+\delta \rho t_{5}{ }^{2}+\delta \rho t_{7}{ }^{2}\right)^{\frac{1}{2}}=0.001 \frac{\mathrm{gm}}{\mathrm{cm}^{2}}$

Dummy Targets
Dummy targets fabricated from solid piece of ASTM B209 AL7075. Density of the base metal was measured prior to machining

$$
\varrho:=2.791 \cdot \frac{g m}{c^{3}}
$$

$$
\delta \rho:=0.01 \cdot \frac{g m}{c^{3}}
$$

$$
t_{1}:=0.86 \cdot \mathrm{~mm}
$$

$t_{2}:=0.846 \cdot \mathrm{~mm}$
$\delta t:=0.01 \cdot m m$
$\rho t_{1}:=\rho \cdot t_{1}=0.24 \frac{\mathrm{gm}}{\mathrm{cm}^{2}}$
$\delta \rho t_{1}:=\left(\left(t_{1} \cdot \delta \rho\right)^{2}+(\rho \cdot \delta t)^{2}\right)^{\frac{1}{2}}=0.003 \frac{g m}{\mathrm{~cm}^{2}}$
$\rho t_{2}:=\rho \cdot t_{2}=0.236 \frac{\mathrm{gm}}{\mathrm{cm}^{2}}$
$\delta \rho t_{2}:=\left(\left(t_{2} \cdot \delta \rho\right)^{2}+(\rho \cdot \delta t)^{2}\right)^{\frac{1}{2}}=0.003 \frac{g m}{c m^{2}}$
base density
uncertainty in density

Thickness of target 1 at beam location (center of foil)

Thickness of target 2 at beam location (center of foil)
uncertainty in thickness
areal thickness of foils 1
uncertain of area thickness foil 1
areal thickness of foils 1
uncertain of area thickness foil 1

