The bright SRC/EMC future

XEM 2: electric boogaloo

Schedule (ish)

2015	2016	2017	2018
Beam to Hall A 3H/3He	Jan/Feb ¹⁰ B, ¹¹ B, ¹² C	Other stuff	Maybe?

Maybe talk to Steve about running in 2017 Any reason to delay?

Settings might need to be slightly optimized/merged

Simona's Runplan

SHMS (e⁻)

Angle (deg)	E _p (GeV)	H ₂ (h)	D ₂ (h)	Al(empty) (h)	¹² C (h)	¹⁰ B (h)	¹¹ B (h)
17	7.5 6.1 5.5 5 4.5 4	0.5 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1	0.5	0.5	0.5
20	5.4 4.4 3.5 2.9	0.4 0.1 0.1 0.1	0.4 0.1 0.1 0.1	0.2 0.1 0.1 0.1	0.1 0.1 0.1 0.1		
25	4.4 3.5 2.8	1.6 0.4 0.2	1 0.4 0.2	0.5 0.2 0.2	1 0.25 0.2		
35	2.95 2.4 1.9 1.55	13.3 2.5 1 0.6	7 1.5 0.5 0.6	2 0.5 0.3 0.3	12 2.5 1 1	To be the en	taken at d of the
40	2.4 1.9	22 5	11 3	3 1	11 2	e ⁻ ru	Inning
30	3.6 3.2 2.7 2.4 2	5.4 2 0.7 0.5 0.3	3 1 0.7 0.5 0.3	1 0.5 0.5 0.2 0.2	2 0.5 0.5 0.5 0.5	2 0.5 0.5 0.5 0.5	2 0.5 0.5 0.5 0.5
		58 h	33 h	12 h	36 h	4.5 h	4.5 h

2015: ~25 PAC days - Commissioning "Experiment"

9 days of E12-06-107 search for color transparency

A(e,e'p) only – "easy" coincidence measurement

E12-10-002 F₂^{p,d} structure functions at large x

Momentum scans help understand acceptance

2 days E12-10-108 EMC Effect

Integrate light nuclei with F₂ run, Point target helps acceptance studies.

Sneaking in

3 days of E12-10-003 d(e,e'p)

If time available Push to lower cross sections

2016:

- E12-09-017 P_t dependence of basic SIDIS cross sections Push particle ID capabilities of SHMS
- E12-09-002 Precise $\pi^+\pi^-$ ratios in SIDIS Charge Symmetry Detector efficiencies

E12-09-011 L/T separated p(e,e'K⁺) factorization test

Easiest L/T separation

2017:

E12-06-121 g₂ⁿ measurements at fixed Q²

First polarized ³He target experiment in Hall C

A₁ⁿ, *Fπ*, *GeN*?

Targets to consider (assuming 1x1 mm² raster)

Target	Α	Z	Why?	Max current
Titanium	48	22	TO compare to 48Ca	40uA
Nickel	58	28	Buddies	80uA
Nickel	64	28	for Calcium	80uA
Ruthenium	96	44	Same	80uA
Ruthenium	104	44	Same	80uA
Thorium	232	90	Distorted nucleus – possible spatial dependence of SRCs	80uA
Uranium	238	92	Best n/p	10uA (very conservative)

Target ladder: 3 loops + 4 "normal" solid targets Calcium goes into loop 3 ⁶Li, ⁷Li, ¹²C, ⁶³Cu, ¹⁹⁷Au \rightarrow just over one ladder (lots of space!)

Sensitivity to NP pairs as N/P ratio

Manpower and stuff to do

Students

 \rightarrow Can work on new replay engine ahead of time

1. Kayla Craycraft – UT (x>1 in 2016, maybe EMC 2016?)

Targets

- \rightarrow Make ORNL redo calcium targets?
- \rightarrow Demand ⁴⁰Ca foil and a less crappy ⁴⁸Ca foil?
- \rightarrow Thickness measurements (Nadia will investigate)
- \rightarrow Pure boron?
- Is there anything expensive that needs money? (I don't think so)