Difference between revisions of "Discussion of: An Automatic Framework to Build Neural Network-based Surrogate for High-Performance Computing Applications"

From epsciwiki
Jump to navigation Jump to search
 
Line 6: Line 6:
 
** How is Bayesian used? (what are priors?)
 
** How is Bayesian used? (what are priors?)
 
* Feature to introduce perturbation into input features in cases where insufficient variation of data are available.(section 3.1, Step 3)
 
* Feature to introduce perturbation into input features in cases where insufficient variation of data are available.(section 3.1, Step 3)
 
+
* μ = 10% for hit rate test.
  
 
== Cissie ==
 
== Cissie ==
 
* Slides: [https://docs.google.com/presentation/d/1Z5SXj7-yfROGzdTcfkIgT6Tg1s1a5sANaa1rxGvTHTA Auto-HPCNet vs PHASM]
 
* Slides: [https://docs.google.com/presentation/d/1Z5SXj7-yfROGzdTcfkIgT6Tg1s1a5sANaa1rxGvTHTA Auto-HPCNet vs PHASM]
 
* Related Github folder by the 1st author: https://github.com/wdong5/AutoHPC-autoencoder
 
* Related Github folder by the 1st author: https://github.com/wdong5/AutoHPC-autoencoder

Latest revision as of 17:14, 9 August 2023

David Notes

  • Use of "Customized Autoencoder" to sparsify inputs is interesting.
    • Are `const` parameters the primary values being filtered?
  • User inputs place boundaries on accuracy and speed when optimizing topology and input features.
    • How is Bayesian used? (what are priors?)
  • Feature to introduce perturbation into input features in cases where insufficient variation of data are available.(section 3.1, Step 3)
  • μ = 10% for hit rate test.

Cissie