Wednesday October 2, 2013

From Ciswikidb
Revision as of 10:43, 4 October 2013 by Suleiman (talk | contribs)
Jump to navigation Jump to search

We will meet in TED 2561B on Wednesday October 2 at 3:00 pm EST.

For those calling in we'll use the ReadyTalk audio conference system.

1. Dial Toll-Free Number: 866-740-1260 (U.S. & Canada)
2. Enter 7-digit access code 4402297, followed by “#”

Agenda:

1- Bubble Chamber progress at Argonne

2- Computer Center support: mailing list, group disk, wiki page, ...

3- Cost:

 - Indirect General and Administrative (G&A) cost: 55.65% for both labor and procurement (Material and Shop)
 - Indirect Statutory and Fringe for labor: 57.15%
 - Final Bubble Chamber cost media:Bubble_FinalCost.pdf media:Bubble_FinalCost.pptx

4- Error Analysis:

 - Analytical: Statistical, Absolute and Relative Systematic Errors media:Bubble_ErrAna.pdf media:Bubble_ErrAna.pptx
 - Monte Carlo Technique: Statistical, Absolute and Relative Systematic Errors media:Bubble_ErrAnaMC.pdf media:Bubble_ErrAnaMC.pptx



Notes from this meeting:

  • Bubble Chamber:
- The buffer liquid mercury (now volume = 150 ml). Mercury will be in a sealed system that
will allow for changing the active liquid without the need to remove or add mercury.
- Mercury does not tolerate all other metals except for iron. However, CF iron gaskets will destroy the knife edges. 
Still looking for a solution.
- The new design of the chamber will fit in the space between beamline and floor in the Injector (27 inches).
  • Will submit a request to JLab Computer Center for a new email list and group. Our name will be "bubble".
  • Cost:
- The grand overloaded total cost is about $350k. 
- Is it possible for our procurement cost to be considered "Capital Equipment"?
  • Error Analysis:
- It is very important to have the systematic errors being relative, i.e., these errors do not change from one energy to another.
Some of the systematic errors are clearly relative like radiator thickness or chamber thickness errors. For others, we have to 
make sure that they are relative. For example, when we do the energy scan, we need to change the beam energy by exactly 0.1 MeV
without changing or introducing any new factor that would change the beam energy systematic error.