Difference between revisions of "Run Group B"

From clas12-run
Jump to navigation Jump to search
(Undo revision 2047 by Silvia (talk))
Line 71: Line 71:
 
<!-- JUST MODIFY AND SAVE ANYTHING IN THIS COMMENT BLOCK TO FORCE A REFRESH OF THE PHONE NUMBERS TEMPLATEs-->
 
<!-- JUST MODIFY AND SAVE ANYTHING IN THIS COMMENT BLOCK TO FORCE A REFRESH OF THE PHONE NUMBERS TEMPLATEs-->
  
<nowiki>Insert non-formatted text here</nowiki>= Short Term Schedule =
+
= Short Term Schedule =
 
<!--#######################################  SHORT TERM  ################################################-->
 
<!--#######################################  SHORT TERM  ################################################-->
 
<center><font color=blue size=4>
 
<center><font color=blue size=4>
Line 99: Line 99:
 
''(last update 1/30/2019- 8:30 AM)''
 
''(last update 1/30/2019- 8:30 AM)''
  
Torus and solenoid should be energized. Full field for both, torus inbending.  
+
Torus and solenoid should be energized.  
  
 
Restore beam to the hall, following the procedures described in [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]. In summary:  
 
Restore beam to the hall, following the procedures described in [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]. In summary:  

Revision as of 16:12, 1 February 2019

[edit]

Shift Schedule

Shift Checklist

Hot Checkout

Beam Time Accounting

Manuals

Procedures

JLab Logbooks

RC schedule

  • Jan 26 - Feb 6: S. Niccolai
  • Feb 6 - Feb 13: Y. Ilieva
  • Feb 13 - Feb 20: S. Stepanyan
  • Feb 20 - Feb 27: F. Hauenstein
  • Feb 27 - Mar 6: S. Niccolai
  • Mar 6 to Mar 12: J. Gilfoyle
  • Mar 12 to Mar 19: V. Kubarowsky

Role Phone Number
Hall B Run Coordinator (757) 575-7540 (cell)
Hall B Physics Division Liaison (757) 876-1789 (cell)
MCC 7048
Crew Chief 7045
Crew Chief (757) 876-3367 (cell)
Program Deputy (757) 876-7997 (cell)
RadCon (757) 876-1743 (cell)
Gate House Guard 5822
Location Phone Number
Hall B Floor 5165
Hall B Space Frame 5170 and 5171
Hall B Forward Carriage 5371
Hall B Gas Shed 7115
Hall B Counting House 5244 (Shift Expert)
Hall B Counting House (757) 329-4846 (Shift Expert cell)
Hall B Counting House 5245 or 5126 (Shift Worker)
Hall A Counting House 5501
Hall C Counting House 6000
Hall D Counting House 5504
Hall B System Phone Number On-Call Person
Engineering (757) 748-5048 (cell)
(757) 897-9060 (cell)
Engineering On-Call (primary)
Denny Insley (secondary)
Slow Controls (757) 748-6922 (cell) Nathan Baltzell
Beamline (757) 303-3996 (cell) Eugene Pasyuk
DC (757) 218-4372 (cell)
(757) 748-5048 (cell)
Florian Hauenstein (primary)
Engineering On-Call (secondary)
SVT/MVT/MM (757) 541-7539 (cell)
(757) 753-7769 (cell)
Yuri Gotra (primary)
Rafo Paremuzyan (secondary)
ECAL (757) 810-1489 (cell) Cole Smith
FTOF/CTOF/CND (757) 344-7204 (cell) Daniel Carman
ALERT (757) 329-4844 (cell) Raphael Dupré
HTCC/LTCC (757) 344-7174 (cell) Youri Sharabian
FT (757) 344-1848 (cell) Raffaella De Vita
BAND (757) 310-7198 (cell) Florian Hauenstein
RICH (757) 344-3235 (cell)
(757) 748-6922 (cell)
Christopher Dilks (primary)
Nathan Baltzell (secondary)
DAQ (757) 232-6221 (cell) Sergey Boiarinov
HYDRA (317) 550-9226 (cell) Torri Jeske
Authorized Hall B Solenoid/Torus Operators
Hall B Denny Insley, Morgan Cook, Eugene Pasyuk
Magnet Group Probir Ghosha, Renuka Rajput-Ghoshal
Detector Support Group Brian Eng, Pablo Campero, Tyler Lemon
DC Power Onish Kumar, Sarin Philip
  • Note, all non-JLab numbers must be dialed with an area code. When calling from a counting-house landline, dial "9" first.
  • To call JLab phones from outside the lab, all 4-digit numbers must be preceded by 757-269
  • Click Here to edit Phone Numbers. Note, you then also have to edit the current page to force a refresh.

Click Here to edit Phone Numbers. Note, you then also have to edit this page to force a refresh.


CLAS12 Run Group B, spring 2019
Beam energy 10.6 GeV (5 pass)
Important: Document all your work in the logbook!
Remember to fill in the run list at the beginning and end of each run (clas12run@gmail.com can fill the run list)

RC: Silvia Niccolai

PDL: Maurizio Ungaro


Initial Run Plan:

(last update 1/30/2019- 8:30 AM)

Torus and solenoid should be energized.

Restore beam to the hall, following the procedures described in [1]. In summary:

Beam to Tagger dump

Tagger magnet ON

  • All detectors must be OFF (except FTOF)
  • Halo counters must be ON and MASKED
  • Blank collimator must be IN
  • Torus and solenoid energized
  • Low beam current (<10 nA)
  • Check beam quality using harp scans 2C21 and 2C24.

When the beam quality is acceptable, take a Moeller run to verify polarization, following procedures [2] If the polarization is acceptable (>=85%), send beam back to Faraday cup. If not, a spin-dance may be necessary to find the Wien angle maximizing our polarization.

Beam to Faraday cup

  • tell MCC that beam is acceptable at the tagger
  • ask to take the beam away, degauss and turn OFF the tagger magnet
  • position 20 mm diameter collimator on the beam
  • ask ops to unmask halo counter FSDs and set the halo counter FSD thresholds as defined in the run wiki and with the integration time interval to 5 milliseconds
  • when ready ask MCC to send ∼ 5 nA beam straight to the electron dump (downstream end of the Hall B beamline where Faraday cup is located). Note: upstream and midstream halo counter rates should not exceed 100 Hz.
  • check beam quality using the 2H01 harp scan

It may be necessary to check the alignment of beam with respect to the target and CLAS12, according to the procedures in [3]:

  • ask MCC operator to move the beam vertically on 2H01 nA BPM in 0.1 mm steps up then down
  • record rates on halo counters and on BOM for each step. Stop moving in the given direction when rates go more more than ×10 from the previous position
  • analyze rates as a function of position, find a position on 2H01 corresponding to about the mid point of the two extreme highest rate ends. Ask MCC operator to position the beam on that position on 2H01 nA BPM
  • repeat everything for the horizontal alignment, moving the beam to left and right
  • find the best horizontal position
  • set orbit locks using the found vertical and horizontal positions on 2H01 nA BPM

Turn all detectors ON.

Trigger validation studies: random trigger run and/or run with trigger without roads? How long will this take? One shift? All this will be established in this Friday's meeting

Data taking: current scan checking data rates (details will be established before beam is back). Then production data taking once optimal current is determined.

General Instructions:

  • For a given beam current, compute the FSD thresholds according to the Establish Physics Quality Beam document. Call MCC to update the values. Contact the beamline expert if there are questions about setting the FSD thresholds.
  • The main lights in the Hall (dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
  • Do not run more than 60 minutes above 30 nA with 5-pass beam without the beam blocker in front of Faraday cup. Put beam blocker in for long running at high currents for 5 pass operations.
  • Turn DC HV off only for beam tuning; if no beam is available or when beam is stable, keep them on even if you are not taking data.
  • In case of loss of communication with IOCBTARG, follow instructions at https://logbooks.jlab.org/entry/3502218
  • With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.
  • All jscaler iocs (iocjscalerX) on the health screen (under DAQ tab) must be restarted after every DAQ prestart is completed.
  • Check that no unecessary beamline-related screens are open. This includes particularly the big beamline overview screen, but also and any motor/harp/collimator screens, and ioc health screens.

Every Shift:

  • Follow run plan as outlined by RC
  • If any concern about beam stability, ask MCC if orbit locks are on (they should be).
  • Keep shift summary up to date in HBLOG. Record all that happens.
  • Check on white board all scalers, strip charts and monitoring plots that need to be logged regularly
  • Document any beam condition change and send scaler GUIs to HBLOG
  • Fill out BTA hourly. Click "Load from EPICS" to automatically fill the left side.
  1. Fill and submit the shift checklist in the logbook
  2. Perform 2H01A harp scan once per shift or when beam conditions have changed, based on beam monitors (BPMs, halo rates, beam-viewer). During harp scans the HV for DC and HTCC should be OFF.

Every Run:

  • Log screenshots of:
  • main scaler GUI display
  • Detector occupancy plots
  • Trigger rate gui
  • Beam strip charts


  • Note 1: Be very mindful of the background rates in the halo counters, rates in the detectors, and currents in the SVT for all settings to ensure that they are at safe levels.

The integrated rates on the upstream counters have to be in the range 0-15 Hz (rates up 100 Hz are acceptable) and the rates on the midstream counters have to be in the range 10-20 Hz (acceptable up to 50 Hz) @50 nA. Counting rates in the range of hundreds of Hz may indicate bad beam tune or bleed-through from other Halls.

  • Note 2: At the end of each run, follow the standard DAQ restart sequence

"end run", "cancel", "reset", then if the run ended correctly, "download", "prestart", "go". If the run did not end correctly or if any ROCs had to be rebooted, "configure", "download", "prestart", "go".

After each step, make sure it is complete in the Run Control message window. If a ROC has crashed, find which one it is and issue a roc_reboot command and try again. Contact the DAQ expert if there are any questions.

  • Note 3: Nominal beam positions: 2C24A (X=0.2 mm, Y=0.2 mm) , 2H01 (X=0.3 mm, Y=-0.9 mm)
  • Note 4: Do not turn OFF FTOF HVs, even during the beam tune with CW beam (turn off when doing a Moller run or if there is tuned/pulsed beam in the upstream beamline)
  • Note 5: In case of a Torus and/or Solenoid Fast Dump do the following:
    1. Notify MCC to request beam OFF and to drop Hall B status to Power Permit
    2. Call Engineering on-call
    3. Make separate log entry with copies to HBTORUS and HBSOLENOID logbooks. In the "Notify" field add Ruben Fair, Probir Goshal, Dave Kashy and esr-users@jlab.org
    4. Notify Run Coordinator
    5. Turn off all detectors
  • Note 6: When beam is being delivered to the Faraday Cup:
    1. the Fast Shut Down elements: Upstream, Midstream, Downstream, BOM, and Solenoid should always be in the state UNMASKED
    2. No changes to the FSD threshold should be made without RC or beamline expert approval
  • Note 7: Any request for a special run or change of configuration has to be approved by the RC & documented
  • Note 8: Carefully check the BTA every hour and run the script btaGet.py to print for you what HAS TO BE in BTA for this hour. Edit BTA if it is incorrect.
  • Note 9: Reset CLAS12MON frequently to avoid histogram saturation.
  • Note 11 Do not Turn OFF MVT HV: Instead go to 'Restore settings' from the MVT overview screen:
    1. SafeMode.snp for beam tuning and Moeller runs
    2. MV_HV_FullField.snp for full solenoid field
    3. MV_HV_MidField.snp wgeb solenoid < 4T

  • NOTE 12 Check the vacuum periodically, make sure vacuum id not higher than 5e-5
  • NOTE 13 Always reset the CFD threshold after all power off/on on the CND CAMAC crate

After the CAMAC crate (camac1) holding the CND CFD boards is switched off for any reason, it is mandatory to reset the associated thresholds typing the following command from any clon machine terminal: $CODA/src/rol/Linux_x86_64/bin/cnd_cfd_thresh -w 0

If this command is failing and the crate is not responding, reboot it as follows: roc_reboot camac1

  • NOTE 14: As of 10/25, the issue of detector scalers being frozen and starting a new run has been resolved. Shift workers should anyway check routinely scalers to verify they update correctly and make a logbook entry if anomalies are observed after starting a new run.


Clas12design.png