Difference between revisions of "Engineering Run"

From clas12-run
Jump to navigation Jump to search
 
(314 intermediate revisions by 8 users not shown)
Line 9: Line 9:
 
===[https://accweb.acc.jlab.org/hco/readiness Hot Checkout]===
 
===[https://accweb.acc.jlab.org/hco/readiness Hot Checkout]===
 
===[https://bta Beam Time Accounting]===
 
===[https://bta Beam Time Accounting]===
 +
===[https://www.jlab.org/Hall-B/run-web/comm/ESAD_HallB-CLAS12_rgA.pdf ESAD], [https://www.jlab.org/Hall-B/run-web/comm/COO_HallB-CLAS12_rgA.pdf COO], [https://www.jlab.org/Hall-B/run-web/comm/RSAD_HallB-CLAS12_rgA.pdf RSAD], [https://www.jlab.org/div_dept/train/SAF111/Hall%20B%20worker%20Safety%20Training%20%28SAF111%29%20%2008%2001-12-1.pdf ERG] ===
 
<!-- ===[https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc#CLAS12_Operations_Documentation Operations Documentation]=== -->
 
<!-- ===[https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc#CLAS12_Operations_Documentation Operations Documentation]=== -->
  
Line 73: Line 74:
 
</center>
 
</center>
  
== RC: Daniel S. Carman ==
+
== RC: Silvia Niccolai ==
* (757) 575-7540
+
* (757) 575-7540
 
* 9 575 7540 from Counting Room
 
* 9 575 7540 from Counting Room
* carman@jlab.org
+
* silvia@jlab.org
  
== PDL: Eugene Pasyuk ==
+
== PDL: Maurizio Ungaro ==
 
*  (757) 876-1789  
 
*  (757) 876-1789  
 
* 9 876-1789 from Counting Room
 
* 9 876-1789 from Counting Room
* pasyuk@jlab.org
+
* ungaro@jlab.org
  
 
<br>
 
<br>
  
* Note 1: Leave the HV to the FMT off until further notice.
+
* Note 1: Be very mindful of the background rates in the halo counters, rates in the detectors, and currents in the SVT for all settings to ensure that they are at safe levels.
  
* Note 2: Be very mindful of the background rates in the halo counters, rates in the detectors, and currents in the SVT for all settings to ensure that they are at safe levels.
+
* Note 2: At the end of each run, follow the DAQ restart sequence "end run", "abort", "reset", "download", "prestart", "go". After DAQ prestart is complete reboot the scaler IOCs with the command: iocjscalerRestartAll.sh. Note: After each step, make sure it is complete in the Run Control message window. If a roc has crashed, find which one it is and issue a roc_reboot command and try again. Contact the DAQ expert if there are any questions.
  
* Note 3: At the end of each run, follow the DAQ restart sequence "end run", "abort", "reset", "download", "prestart", "go". The DAQ rate should be 2 -3 kHz (this includes a 1 kHz pulser). After DAQ prestart is complete reboot the scaler IOCs with the command: iocjscalerRestartAll.sh. Note: After each step, make sure it is complete in the Run Control message window. If a roc has crashed, find which one it is and issue a roc_reboot command and try again. Contact the DAQ expert if there are any questions.
+
* Note 3: Nominal beam positions: '''2C21 (X=0.0 mm, Y=0.0 mm), 2C24 (X=0.0 mm, Y=0.7 mm), 2H01 (X=0.3 mm, Y=-0.6 mm)'''
  
* Note 4: Record forces on torus and solenoid sensors in configuration with torus at full field and solenoid at zero field.
+
* Note 4: With beam to the Faraday Cup, typical rates pn all halo counters upstream from the target should be either 0 or of the order of few counts. Count rates in the range of tens or more may indicate bad beam tune or bleed-through from other Halls.
 
 
* Note 5: When possible during a day time access, call Jennifer Williams to do a magnetic field survey in the hall with torus and solenoid at full field.
 
  
 
{| {{TableStyle1}}  
 
{| {{TableStyle1}}  
Line 100: Line 99:
  
 
== <font color=blue>''' Run Plan:'''</font>==
 
== <font color=blue>''' Run Plan:'''</font>==
 +
''(last update 2/4 - 14:30)''
  
* <s>Begin initial DAQ and trigger checkout to re-establish the DAQ and basic electron trigger from the Dec. 2017 run. This work will be led by the DAQ and trigger experts. This work is as specified in the Commissioning Run Plan [https://www.jlab.org/Hall-B/calcom/cwb-erun.pdf Phase 1 Step #7].</s>
+
All studies will take data at 100% torus field (negatives inbending) and 100% solenoid field (positive polarity on supply). The beam position should be as indicated above. Make sure FSD thresholds are set correctly for whatever current is selected (refer to instructions in the "Establish-physics quality beam" procedure at [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]), integration time is set to 5 ms, and that the orbit locks are on.  
* <s>Take data run with FT-Off for 8 hours at 20 nA. This work is as specified in the Commissioning Run Plan [https://www.jlab.org/Hall-B/calcom/cwb-erun.pdf Phase 1 Step #13].
 
** Carefully monitor beam tune to be sure that it is stable. Contact MCC immediately if the tune goes bad. Contact the beamline expert if there are questions regarding the beam tuning.
 
** Compute the FSD thresholds according to the [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf Establish Physics Quality Beam] document. Call MCC to update the values. Contact the beamline expert if there are questions about setting the FSD thresholds.</s>
 
* Begin luminosity scan and solenoid rate studies:
 
** Perform luminosity scan at currents of 0 nA, 10 nA, <s>25 nA</s>, <s>50 nA</s>, 75 nA, 100 nA, 120 nA. For each setting, record the rates and currents for all subsystems, as well as DC occupancies. Record all information in the logbook. This work is as specified in the Commissioning Run Plan [https://www.jlab.org/Hall-B/calcom/cwb-erun.pdf Phase 1 Step #12]. The Run Coordinator will determine the safe current limit for CLAS12. Do not go beyond 75 nA without consulting the Run Coordinator. DC time windows should be 250 ns (R1), 500 ns (R2), 750 ns (R3). use a random trigger at 15 kHz.
 
** With a beam current of 10 nA, study the detector rates and currents for all subsystems, as well as DC occupancies for solenoid field settings of 100%, 90%, 80%, 70%, 60%, 50%. Record all information in the logbook. This work is as specified in the Commissioning Run Plan [https://www.jlab.org/Hall-B/calcom/cwb-erun.pdf Phase 1 Step #11].
 
* Work on trigger development studies and detector optimization. Contact the DAQ and trigger experts to lead this effort. This work is as specified in the Commissioning Run Plan [https://www.jlab.org/Hall-B/calcom/cwb-erun.pdf Phase 1 Step #10].
 
 
 
* Take data run with FT-Off for 8 hours at 50 nA. This work is as specified in the Commissioning Run Plan [https://www.jlab.org/Hall-B/calcom/cwb-erun.pdf Phase 1 Step #13].
 
** Carefully monitor beam tune to be sure that it is stable. Contact MCC immediately if the tune goes bad. Contact the beamline expert if there are questions regarding the beam tuning.
 
** Compute the FSD thresholds according to the [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf Establish Physics Quality Beam] document. Call MCC to update the values. Contact the beamline expert if there are questions about setting the FSD thresholds.</s>
 
* Take calibration data with the torus at 60% field and the solenoid at 60% field for 8 hours at 10 nA beam current.
 
* Longer term plans:
 
** Work on detector setup optimization steps to set DC readout windows for R1, R2, and R3, and the PMT-based detector TDC readout windows to match the FADC windows. This work will be led by the DAQ expert in conjunction with the subsystem experts. This work is as specified in the Commissioning Run Plan [https://www.jlab.org/Hall-B/calcom/cwb-erun.pdf Phase 1 Step #8].
 
** Work on optimizing the electron trigger. This work will be led by the trigger team. This work is as specified in the Commissioning Run Plan [https://www.jlab.org/Hall-B/calcom/cwb-erun.pdf Phase 1 Step #10].
 
 
 
 
 
| valign=top |
 
  
==<font color=blue>''' General Instructions''':</font>==
+
<!-- * Prepare for beam tuning to the tagger yoke: SVT (contact expert to do it), MVT, CND, CTOF, FTT, HTCC, DC, FTOF should be off, tagger magnet should be on. Follow the instructions in the "Establish-physics quality beam" procedure at [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]. Compare harp scan to the ones performed on 1/25 swing shift (https://logbooks.jlab.org/entry/3520873 and https://logbooks.jlab.org/entry/3520881). Consult with the beamline expert in case of issues. -->
 +
<!--* If beam profiles at the tagger are acceptable, move to beam tuning to the Faraday Cup. Again, refer to the instructions in the "Establish-physics quality beam" procedure at [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]. Compare harp scan with the one from 1/25 swing shift (https://logbooks.jlab.org/entry/3520947).  -->
 +
<!--* Once beam to Faraday Cup is established, prepare to start data taking. Switch on all detectors; contact expert to switch on SVT. Start trigger studies following instructions from the DAQ expert. -->
 +
* Take 2 hour data runs with PROD/elec_htcc_1phe_pcal_300.trg at 30 nA with the following DC HV and thresholds:
 +
** R1: #9/-45 mV, R2: #10/-65 mV, R3: #10/-60 mV
 +
** R1: #8/-30 mV, R2: #10/-65 mV, R3: #9/-45 mV
 +
** R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
 +
* Take data at 35 nA with PROD/elec_htcc_1phe_pcal_300.trg until morning; runs should be 2 hrs in length. Use R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
  
* During beam tuning and harp scans Hall-B halo FSD must be masked.
+
* Hall B work for Monday:
* The main lights in the Hall (dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
+
** Ramp down solenoid (torus can stay up) (RC)
* Do not run more than 60 minutes above 30 nA without the beam blocker in front of Faraday cup. Put beam blocker in for long running at high currents.
+
** Empty the hydrogen target (Hall B Engineering)
* Turn DC HV off only for beam tuning; if no beam is available or when beam is stable, keep them on even if you are not taking data.
+
** Complete shielding addition outside scattering chamber (Hall B Engineering)
* In case of loss of communication with IOCBTARG, follow instructions at https://logbooks.jlab.org/entry/3502218
+
** Restore beamline (Hall B Engineering)
* With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.
+
** Replace FT-Hode mezzanine board (N. Zachar)
* All jscaler iocs (iocjscalerX) on the health screen under DAQ tab) must be restarted after every DAQ prestart is completed.  A button to do it all in one is available on the beamline overview screen
+
** Work on DC cable swaps (M. Cook + M. Mestayer)
* Check that no unecessary beamline-related screens are open.  This includes particularly the big beamline overview screen, but also and any motor/harp/collimator screens, and ioc health screens.
+
** Work on vacuum gauge (D. Anderson)
 +
** Investigate polarity of busy signal (S. Boyarinov)
 +
** Setup gated/ungated scalers and clock scalers (S. Boyarinov)
 +
** SAF111 walkthrough (E. Pasyuk)
 +
** Pass change (5-pass to 3-pass)
  
== <font color=blue>''' Beam Tuning:'''</font>==
+
<!-- == <font color=blue>''' Beam Tuning:'''</font>==
 
   
 
   
 
* <b>Whenever preparing to receive beam, make sure the following conditions are established: all CLAS12 detectors are off and target is empty. Turn DC HV off, leaving LV on. For SVT, MVT, FTH and FTT, first turn HV off and then LV off. For any problem, consult with the expert-on-call.</b>
 
* <b>Whenever preparing to receive beam, make sure the following conditions are established: all CLAS12 detectors are off and target is empty. Turn DC HV off, leaving LV on. For SVT, MVT, FTH and FTT, first turn HV off and then LV off. For any problem, consult with the expert-on-call.</b>
Line 149: Line 142:
 
*# repeat harp scans at 2C21, 2C24 (tagger harp) and 2H01: the profile for 2H01 should be as in https://logbooks.jlab.org/entry/3507626. Make sure you select the proper PMT for the analysis. The profile at 2C21 and 2C24 should be as in the scans performed with beam to the tagger magnet yoke dump. If necessary ask MCC to adjust the beam profile at 2H01 to match the previous scan.  
 
*# repeat harp scans at 2C21, 2C24 (tagger harp) and 2H01: the profile for 2H01 should be as in https://logbooks.jlab.org/entry/3507626. Make sure you select the proper PMT for the analysis. The profile at 2C21 and 2C24 should be as in the scans performed with beam to the tagger magnet yoke dump. If necessary ask MCC to adjust the beam profile at 2H01 to match the previous scan.  
  
When ready to get beam, Turn all beamline devices ON, turn all CLAS12 detectors OFF (including SVT)
+
When ready to get beam, turn all beamline devices ON, turn all CLAS12 detectors OFF
 
 
<!--
 
# For every daq crash login into clondaq3 as a clasrun then run the following command
 
#* clasrun@clondaq3:clasrun> <font color='blue'> save_DAQ_logs.pl</font> (See [https://logbooks.jlab.org/files/2016/04/3397123/DAQ_DPM_Crash_0.png])
 
# [https://clonwiki0.jlab.org/wiki/index.php/DAQ/Online_Quick_Reference Reboot DAQ completely].
 
# If the procedure fails to restore DAQ, call Sergey (DAQ on call) without any further disturbing the DAQ status.
 
 
 
=== Locking up the hall  ===
 
* Work with the hall work coordinator (Doug Tilles or his designee) to make sure hall is ready for sweep at around 3pm:
 
** Vacuum is good, magnet power supplies (Tagger and Torus) are turned ON and in remote mode, LCW is on.
 
* Make sure experts, beamline, ECal, DC, HTCC, FTOF, and slow controls, checked their systems before the lockup.
 
* When ready notify MCC to start sweep and lockup of the hall.
 
* Make sure all necessary monitoring GUIs are up and running.
 
* Make sure beam viewer screens are up.
 
* When hall is in "Beam Permit"
 
**  Ramp torus to 10% of max current (380A)
 
** Turn tagger magnet ON if beam tune on the tagger dump or tagger yoke dump will be needed (it will be needed if beam comes back after several hours of down)
 
** Turn all beamline devices ON, turn all CLAS12 detectors OFF  
 
 
-->
 
-->
<!-- ===Establishing Acceptable Beam Conditions:===
 
# <font color='red'>'''Make sure CLAS12 is OFF When Beam is Turned For the First Time After long Down.'''</font>
 
# <b>First send beam to the tagger yoke dump:</b>
 
#* Check that beam type is set to "Photon" (<tt>HPS_EPICS->Beam->BTA</tt>).
 
#* Ask MCC to turn ON the tagger magnet and then deliver <10 nA beam.
 
#* Follow instructions under "Procedures" on the documentation tab for [[Media:CLAS12_beamline_commissioning.pdf|Beamline Commissioning Plans]]. To tune the beam on tagger yoke dump and perform harp scans, beam current should be <10 nA.
 
#* Check profile using 2C21 and tagger harp scans, and compare the positions and widths with previous scans ([https://logbooks.jlab.org/entry/3388429],[https://logbooks.jlab.org/entry/3388441])
 
#** Positions on both harps should be within 1mm
 
#** Width on 2C21 should be <~0.1+/-0.05 mm
 
#** Width on tagger harp (2C24) <~0.5 +/- 0.1mm-->
 
<!--#* Halo counters UPS-L/R and TAG-L/T/T2 should be ~few Hz/nA [https://logbooks.jlab.org/entry/3376736]-->
 
<!-- # <b> While MCC degausses the tagger magnet, verify that chicane is ON</b>
 
#* If not, turn it on.  Strictly follow the procedure in the beam line manual!-->
 
<!--# ''' Send beam to the Faraday cup '''
 
#* If the beam optics is correct, then you should immediately see the beam spot on the Downstream Viewer
 
#* If you don't see it immediately, and rates on halo counters are more than 100 Khz, then ask MCC, to change to pulsed (tune mode) beam, and ask to put corrector values. At this point don't accept any CW beam, until beam spot is visible on Downstream Viewer.
 
#* If MCC operator is not able to tune the beam more than 30 minutes, then please notify RC
 
#* Tune beam profile at CLAS12 target using 2H01A harp. The required beam profile at 2H01A harp is: X-width <~0.3 mm, Y-width <~ 0.3 mm
 
#* Check and log the beam spot on chromax viewer
 
#* Check rates on halo counters
 
#*# UPS-L and UPS-R few Hz/nA,
 
#*# The tagger counters should count less than Hz/nA and downstream counters should count ~Hz/nA,
 
#*# Midstream counters few Hz/nA
 
#* Once all the above is achieved, turn first CLAS12 ECal HV '''ON''' and monitor and log ECal rates before bringing rest of the detector UP-->
 
  
<!-- === Setting up the FSD threshold ===
+
| valign=top |
*When you are about to calculate FSD limit, it means the beam is already established, and the target is in.
 
* To calculate the FSD threshold run the folloing executable
 
hpsrun@clonpc11> /home/hpsrun/scripts/FSD/Calc_FSD_Threshold.exe
 
* Note we use 1 ms integration time, and want 5.5 sigma away from the average rates
 
* Allowed tolerable rate increase default is 15%, if that causes many trips, then contact RC, he might suggest to increase that number
 
* <font color='red'> Make sure if MCC operator set the FSD limit and integration time correctly </font>
 
-->
 
  
 +
==<font color=blue>''' General Instructions''':</font>==
  
|-
+
* For a given beam current, compute the FSD thresholds according to the [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf Establish Physics Quality Beam] document. Call MCC to update the values. Contact the beamline expert if there are questions about setting the FSD thresholds.
!align=left width=50% style="background:#eeeeee;"|
+
* The main lights in the Hall (dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
 +
* Do not run more than 60 minutes above 30 nA with 5-pass beam without the beam blocker in front of Faraday cup. Put beam blocker in for long running at high currents for 5 pass operations.
 +
* Turn DC HV off only for beam tuning; if no beam is available or when beam is stable, keep them on even if you are not taking data.
 +
* In case of loss of communication with IOCBTARG, follow instructions at https://logbooks.jlab.org/entry/3502218
 +
* With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.
 +
* All jscaler iocs (iocjscalerX) on the health screen (under DAQ tab) must be restarted after every DAQ prestart is completed.
 +
* Check that no unecessary beamline-related screens are open.  This includes particularly the big beamline overview screen, but also and any motor/harp/collimator screens, and ioc health screens.
  
 
==Every Shift:==
 
==Every Shift:==
Line 216: Line 167:
 
#* Fill and submit the [https://logbooks.jlab.org/checklists/151 shift checklist in the logbook]
 
#* Fill and submit the [https://logbooks.jlab.org/checklists/151 shift checklist in the logbook]
 
# Perform 2H01A harp scan once per shift or when beam conditions have changed, based on beam monitors (BPMs, halo rates, beam-viewer). During harp scans the HV for DC and HTCC should be OFF.
 
# Perform 2H01A harp scan once per shift or when beam conditions have changed, based on beam monitors (BPMs, halo rates, beam-viewer). During harp scans the HV for DC and HTCC should be OFF.
 
| valign=top style="background:#eeeeee;"|
 
  
 
==Every Run:==
 
==Every Run:==
Line 227: Line 176:
  
 
|}
 
|}
 
= Long Term Schedule =
 
<!--#######################################  LONG TERM  #################################################-->
 
  
 
= Monitoring =
 
= Monitoring =
Line 236: Line 182:
 
| valign=top |
 
| valign=top |
 
===Webcams===
 
===Webcams===
* [http://cctv6.jlab.org Faraday Cup Beam Viewer]
+
* [http://hallbcam07.jlab.org Faraday Cup Beam Viewer]
 
* [http://cctv1.jlab.org Tagger Beam Dump Viewer]
 
* [http://cctv1.jlab.org Tagger Beam Dump Viewer]
 
* [http://cctv12.jlab.org CND CAMAC Crate]
 
* [http://cctv12.jlab.org CND CAMAC Crate]
Line 260: Line 206:
 
===Hall-B===
 
===Hall-B===
 
* [https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc Operation Safety Procedures]
 
* [https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc Operation Safety Procedures]
* [https://clasweb.jlab.org/wiki/index.php/Engineering_Run_Analysis Offline Analysis Wiki]
+
* [https://wiki.jlab.org/clas12-run/index.php/Run_Group_A Run Group A Wiki]
 +
* [https://clasweb.jlab.org/wiki/index.php/Run_Group_A Run Group A Analysis Wiki]
 +
* [https://clasweb.jlab.org/wiki/index.php/Engineering_Run_Analysis Engineering Run Analysis Wiki]
 
* [http://clasweb.jlab.org/rcdb RCDB]
 
* [http://clasweb.jlab.org/rcdb RCDB]
 
| valign=top |
 
| valign=top |
Line 267: Line 215:
 
* [http://opweb.acc.jlab.org/CSUEApps/bta03/pd_shiftplan_history.php Program Deputy Shift Plans]
 
* [http://opweb.acc.jlab.org/CSUEApps/bta03/pd_shiftplan_history.php Program Deputy Shift Plans]
 
* [http://opweb.acc.jlab.org/internal/ops/ops_webpage/run_coord/runcoord_form.php?action=main Run Coordinator Reports]
 
* [http://opweb.acc.jlab.org/internal/ops/ops_webpage/run_coord/runcoord_form.php?action=main Run Coordinator Reports]
 +
| valign=top |
 +
===Bluejean meetings===
 +
* [https://bluejeans.com/502085879 Daily analysis meeting] 502085879
 +
* [https://bluejeans.com/502085879 Daily Run meeting] 502085879
 +
* [https://bluejeans.com/7572697303 RGA Wed meeting] 7572697303
 
|}
 
|}
  

Latest revision as of 13:45, 25 July 2024

[edit]


Clas12design.png