Difference between revisions of "Engineering Run"

From clas12-run
Jump to navigation Jump to search
 
(217 intermediate revisions by 8 users not shown)
Line 9: Line 9:
 
===[https://accweb.acc.jlab.org/hco/readiness Hot Checkout]===
 
===[https://accweb.acc.jlab.org/hco/readiness Hot Checkout]===
 
===[https://bta Beam Time Accounting]===
 
===[https://bta Beam Time Accounting]===
 +
===[https://www.jlab.org/Hall-B/run-web/comm/ESAD_HallB-CLAS12_rgA.pdf ESAD], [https://www.jlab.org/Hall-B/run-web/comm/COO_HallB-CLAS12_rgA.pdf COO], [https://www.jlab.org/Hall-B/run-web/comm/RSAD_HallB-CLAS12_rgA.pdf RSAD], [https://www.jlab.org/div_dept/train/SAF111/Hall%20B%20worker%20Safety%20Training%20%28SAF111%29%20%2008%2001-12-1.pdf ERG] ===
 
<!-- ===[https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc#CLAS12_Operations_Documentation Operations Documentation]=== -->
 
<!-- ===[https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc#CLAS12_Operations_Documentation Operations Documentation]=== -->
  
Line 68: Line 69:
 
<center><font color=blue size=4>
 
<center><font color=blue size=4>
 
''' CLAS12 Engineering Run, Winter 2018 </font> '''<br>
 
''' CLAS12 Engineering Run, Winter 2018 </font> '''<br>
''' Beam energy 2.1 GeV (1 pass) '''<br>
+
''' Beam energy 10.6 GeV (5 pass) '''<br>
 
''' Important: Document all your work in the logbook! '''<br>
 
''' Important: Document all your work in the logbook! '''<br>
 
''' Remember to fill in the [https://docs.google.com/spreadsheets/d/1frfBlq51qDXZD6fW5rcRefNXSGdVvdMozKUlAVNoUGc/edit?usp=sharing run list] at the beginning and end of each run (clas12run@gmail.com can fill the run list)'''<br>
 
''' Remember to fill in the [https://docs.google.com/spreadsheets/d/1frfBlq51qDXZD6fW5rcRefNXSGdVvdMozKUlAVNoUGc/edit?usp=sharing run list] at the beginning and end of each run (clas12run@gmail.com can fill the run list)'''<br>
 
</center>
 
</center>
  
== RC: Daniel S. Carman ==
+
== RC: Silvia Niccolai ==
* (757) 575-7540
+
* (757) 575-7540
 
* 9 575 7540 from Counting Room
 
* 9 575 7540 from Counting Room
* carman@jlab.org
+
* silvia@jlab.org
  
== PDL: Eugene Pasyuk ==
+
== PDL: Maurizio Ungaro ==
 
*  (757) 876-1789  
 
*  (757) 876-1789  
 
* 9 876-1789 from Counting Room
 
* 9 876-1789 from Counting Room
* pasyuk@jlab.org
+
* ungaro@jlab.org
  
 
<br>
 
<br>
Line 87: Line 88:
 
* Note 1: Be very mindful of the background rates in the halo counters, rates in the detectors, and currents in the SVT for all settings to ensure that they are at safe levels.
 
* Note 1: Be very mindful of the background rates in the halo counters, rates in the detectors, and currents in the SVT for all settings to ensure that they are at safe levels.
  
* Note 2: At the end of each run, follow the DAQ restart sequence "end run", "abort", "reset", "download", "prestart", "go". The DAQ rate should be 2 -3 kHz (this includes a 1 kHz pulser). After DAQ prestart is complete reboot the scaler IOCs with the command: iocjscalerRestartAll.sh. Note: After each step, make sure it is complete in the Run Control message window. If a roc has crashed, find which one it is and issue a roc_reboot command and try again. Contact the DAQ expert if there are any questions.
+
* Note 2: At the end of each run, follow the DAQ restart sequence "end run", "abort", "reset", "download", "prestart", "go". After DAQ prestart is complete reboot the scaler IOCs with the command: iocjscalerRestartAll.sh. Note: After each step, make sure it is complete in the Run Control message window. If a roc has crashed, find which one it is and issue a roc_reboot command and try again. Contact the DAQ expert if there are any questions.
  
* Note 3: Nominal beam positions: 2C21 (X=-0.2 mm, Y=-0.2 mm), 2C24 (X=-0.5 mm, Y=0.9 mm), 2H01 (X=0.5 mm, Y=1.5 mm)
+
* Note 3: Nominal beam positions: '''2C21 (X=0.0 mm, Y=0.0 mm), 2C24 (X=0.0 mm, Y=0.7 mm), 2H01 (X=0.3 mm, Y=-0.6 mm)'''
 +
 
 +
* Note 4: With beam to the Faraday Cup, typical rates pn all halo counters upstream from the target should be either 0 or of the order of few counts. Count rates in the range of tens or more may indicate bad beam tune or bleed-through from other Halls.
  
 
{| {{TableStyle1}}  
 
{| {{TableStyle1}}  
Line 96: Line 99:
  
 
== <font color=blue>''' Run Plan:'''</font>==
 
== <font color=blue>''' Run Plan:'''</font>==
 +
''(last update 2/4 - 14:30)''
 +
 +
All studies will take data at 100% torus field (negatives inbending) and 100% solenoid field (positive polarity on supply). The beam position should be as indicated above. Make sure FSD thresholds are set correctly for whatever current is selected (refer to instructions in the "Establish-physics quality beam" procedure at [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]), integration time is set to 5 ms, and that the orbit locks are on.
 +
 +
<!-- * Prepare for beam tuning to the tagger yoke: SVT (contact expert to do it), MVT, CND, CTOF, FTT, HTCC, DC, FTOF should be off, tagger magnet should be on. Follow the instructions in the "Establish-physics quality beam" procedure at [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]. Compare harp scan to the ones performed on 1/25 swing shift (https://logbooks.jlab.org/entry/3520873 and https://logbooks.jlab.org/entry/3520881). Consult with the beamline expert in case of issues. -->
 +
<!--* If beam profiles at the tagger are acceptable, move to beam tuning to the Faraday Cup. Again, refer to the instructions in the "Establish-physics quality beam" procedure at [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]. Compare harp scan with the one from 1/25 swing shift (https://logbooks.jlab.org/entry/3520947).  -->
 +
<!--* Once beam to Faraday Cup is established, prepare to start data taking. Switch on all detectors; contact expert to switch on SVT. Start trigger studies following instructions from the DAQ expert. -->
 +
* Take 2 hour data runs with PROD/elec_htcc_1phe_pcal_300.trg at 30 nA with the following DC HV and thresholds:
 +
** R1: #9/-45 mV, R2: #10/-65 mV, R3: #10/-60 mV
 +
** R1: #8/-30 mV, R2: #10/-65 mV, R3: #9/-45 mV
 +
** R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
 +
* Take data at 35 nA with PROD/elec_htcc_1phe_pcal_300.trg until morning; runs should be 2 hrs in length. Use R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
  
* After the hall is in beam permit:
+
* Hall B work for Monday:
** Power up the torus magnet to -100% field (negative polarity; negatives outbending)
+
** Ramp down solenoid (torus can stay up) (RC)
** After the torus is at full field, power up the solenoid magnet to 50% field (positive polarity)
+
** Empty the hydrogen target (Hall B Engineering)
* Before beam delivery to the hall:
+
** Complete shielding addition outside scattering chamber (Hall B Engineering)
** Make sure all detectors are off (leave DC LV on)
+
** Restore beamline (Hall B Engineering)
** Make sure the cryotarget is empty
+
** Replace FT-Hode mezzanine board (N. Zachar)
** Make sure the beam blocker is out (it will remain out for the duration of the 1-pass running)
+
** Work on DC cable swaps (M. Cook + M. Mestayer)
* Begin 1-pass program by tuning 10 nA beam to the tagger magnet yoke dump. Follow the beam tuning procedures for Hall B on the run wiki under Procedures. The beamline expert will oversee this work remotely.
+
** Work on vacuum gauge (D. Anderson)
* When the beam tune is acceptable in the upstream beamline, turn off/degauss the tagger magnet and tune 10 nA beam to the Faraday Cup. The beamline expert will oversee this work remotely.
+
** Investigate polarity of busy signal (S. Boyarinov)
As part of the beam tuning, bring the solenoid magnet to 100% field. (Contact the PDL to change the magnet settings - only authorized personnel can change the field settings)
+
** Setup gated/ungated scalers and clock scalers (S. Boyarinov)
** After both magnets are at full field, record in the logbook the screens for the load cells and strain gauges for the torus and the screens for the load cells and EM forces for the solenoid
+
** SAF111 walkthrough (E. Pasyuk)
* When physics quality beam is established to the Faraday Cup, turn on the forward detectors (ECAL, FTOF, LTCC, HTCC, RICH). Record rates and currents in the logbook.
+
** Pass change (5-pass to 3-pass)
* Fill the cryotarget.
 
* Turn on the remaining detector systems. Note all rates/currents/occupancies in the logbook.
 
* Set up the DAQ for production running with the electron trigger set with an energy threshold of 120 MeV; the FT-Trk timing should be checked (this work will be supported by the FT experts)
 
* Take 8 hr of data at 1-20 nA (depending on the DAQ performance).
 
* Trigger studies: Optimize the triggers for normalization studies. Study and optimize the FT trigger. The trigger experts will oversee this work.
 
* Take calibration data for CLAS12 at currents of 10 nA (&pi;<sup>0</sup> events in FT). The FT expert will help to optimize the trigger and conditions for this step.
 
* Physics studies (5 settings) 2 shifts per setting: (final settings to be determined)
 
** -100% torus (neg. polarity), 100% solenoid (pos. polarity)
 
** -60% torus (neg. polarity), 100% solenoid (pos. polarity)
 
** -60% torus (neg. polarity), 60% solenoid (pos. polarity)
 
** -60% torus (neg. polarity), -60% solenoid (neg. polarity)
 
** 60% torus (pos. polarity), -60% solenoid (neg. polarity)
 
** 60% torus (pos. polarity), -100% solenoid (neg. polarity)
 
** 100% torus (pos. polarity), -100% solenoid (neg. polarity)
 
** Take data at 1-20 nA (depending on DAQ performance)
 
  
== <font color=blue>''' Beam Tuning:'''</font>==
+
<!-- == <font color=blue>''' Beam Tuning:'''</font>==
 
   
 
   
 
* <b>Whenever preparing to receive beam, make sure the following conditions are established: all CLAS12 detectors are off and target is empty. Turn DC HV off, leaving LV on. For SVT, MVT, FTH and FTT, first turn HV off and then LV off. For any problem, consult with the expert-on-call.</b>
 
* <b>Whenever preparing to receive beam, make sure the following conditions are established: all CLAS12 detectors are off and target is empty. Turn DC HV off, leaving LV on. For SVT, MVT, FTH and FTT, first turn HV off and then LV off. For any problem, consult with the expert-on-call.</b>
Line 143: Line 143:
  
 
When ready to get beam, turn all beamline devices ON, turn all CLAS12 detectors OFF
 
When ready to get beam, turn all beamline devices ON, turn all CLAS12 detectors OFF
 +
-->
  
 
| valign=top |
 
| valign=top |
Line 148: Line 149:
 
==<font color=blue>''' General Instructions''':</font>==
 
==<font color=blue>''' General Instructions''':</font>==
  
* During beam tuning and harp scans Hall-B halo FSD must be masked.
 
 
* For a given beam current, compute the FSD thresholds according to the [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf Establish Physics Quality Beam] document. Call MCC to update the values. Contact the beamline expert if there are questions about setting the FSD thresholds.
 
* For a given beam current, compute the FSD thresholds according to the [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf Establish Physics Quality Beam] document. Call MCC to update the values. Contact the beamline expert if there are questions about setting the FSD thresholds.
 
* The main lights in the Hall (dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
 
* The main lights in the Hall (dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
Line 155: Line 155:
 
* In case of loss of communication with IOCBTARG, follow instructions at https://logbooks.jlab.org/entry/3502218
 
* In case of loss of communication with IOCBTARG, follow instructions at https://logbooks.jlab.org/entry/3502218
 
* With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.
 
* With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.
* All jscaler iocs (iocjscalerX) on the health screen under DAQ tab) must be restarted after every DAQ prestart is completed.
+
* All jscaler iocs (iocjscalerX) on the health screen (under DAQ tab) must be restarted after every DAQ prestart is completed.
 
* Check that no unecessary beamline-related screens are open.  This includes particularly the big beamline overview screen, but also and any motor/harp/collimator screens, and ioc health screens.
 
* Check that no unecessary beamline-related screens are open.  This includes particularly the big beamline overview screen, but also and any motor/harp/collimator screens, and ioc health screens.
  
Line 182: Line 182:
 
| valign=top |
 
| valign=top |
 
===Webcams===
 
===Webcams===
* [http://cctv6.jlab.org Faraday Cup Beam Viewer]
+
* [http://hallbcam07.jlab.org Faraday Cup Beam Viewer]
 
* [http://cctv1.jlab.org Tagger Beam Dump Viewer]
 
* [http://cctv1.jlab.org Tagger Beam Dump Viewer]
 
* [http://cctv12.jlab.org CND CAMAC Crate]
 
* [http://cctv12.jlab.org CND CAMAC Crate]
Line 206: Line 206:
 
===Hall-B===
 
===Hall-B===
 
* [https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc Operation Safety Procedures]
 
* [https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc Operation Safety Procedures]
* [https://clasweb.jlab.org/wiki/index.php/Engineering_Run_Analysis Offline Analysis Wiki]
+
* [https://wiki.jlab.org/clas12-run/index.php/Run_Group_A Run Group A Wiki]
 +
* [https://clasweb.jlab.org/wiki/index.php/Run_Group_A Run Group A Analysis Wiki]
 +
* [https://clasweb.jlab.org/wiki/index.php/Engineering_Run_Analysis Engineering Run Analysis Wiki]
 
* [http://clasweb.jlab.org/rcdb RCDB]
 
* [http://clasweb.jlab.org/rcdb RCDB]
 
| valign=top |
 
| valign=top |
Line 213: Line 215:
 
* [http://opweb.acc.jlab.org/CSUEApps/bta03/pd_shiftplan_history.php Program Deputy Shift Plans]
 
* [http://opweb.acc.jlab.org/CSUEApps/bta03/pd_shiftplan_history.php Program Deputy Shift Plans]
 
* [http://opweb.acc.jlab.org/internal/ops/ops_webpage/run_coord/runcoord_form.php?action=main Run Coordinator Reports]
 
* [http://opweb.acc.jlab.org/internal/ops/ops_webpage/run_coord/runcoord_form.php?action=main Run Coordinator Reports]
 +
| valign=top |
 +
===Bluejean meetings===
 +
* [https://bluejeans.com/502085879 Daily analysis meeting] 502085879
 +
* [https://bluejeans.com/502085879 Daily Run meeting] 502085879
 +
* [https://bluejeans.com/7572697303 RGA Wed meeting] 7572697303
 
|}
 
|}
  

Latest revision as of 14:45, 25 July 2024

[edit]
Role Phone Number
Hall B Run Coordinator (757) 575-7540 (cell)
Hall B Physics Division Liaison (757) 876-1789 (cell)
MCC 7048
Crew Chief 7045
Crew Chief (757) 876-3367 (cell)
Program Deputy (757) 876-7997 (cell)
RadCon (757) 876-1743 (cell)
Gate House Guard 5822
Location Phone Number
Hall B Floor 5165
Hall B Space Frame 5170 and 5171
Hall B Forward Carriage 5371
Hall B Gas Shed 7115
Hall B Counting House 5244 (Shift Expert)
Hall B Counting House (757) 329-4846 (Shift Expert cell)
Hall B Counting House 5245 or 5126 (Shift Worker)
Hall A Counting House 5501
Hall C Counting House 6000
Hall D Counting House 5504
Hall B System Phone Number On-Call Person
Engineering (757) 748-5048 (cell)
(757) 897-9060 (cell)
Engineering On-Call (primary)
Denny Insley (secondary)
Slow Controls (757) 748-6922 (cell) Nathan Baltzell
Beamline (757) 303-3996 (cell) Eugene Pasyuk
DC (757) 218-4372 (cell)
(757) 748-5048 (cell)
Florian Hauenstein (primary)
Engineering On-Call (secondary)
SVT/MVT/MM (757) 541-7539 (cell)
(757) 753-7769 (cell)
Yuri Gotra (primary)
Rafo Paremuzyan (secondary)
ECAL (757) 810-1489 (cell) Cole Smith
FTOF/CTOF/CND (757) 344-7204 (cell) Daniel Carman
ALERT (757) 329-4844 (cell) Raphael Dupré
HTCC/LTCC (757) 344-7174 (cell) Youri Sharabian
FT (757) 344-1848 (cell) Raffaella De Vita
BAND (757) 310-7198 (cell) Florian Hauenstein
RICH (757) 344-3235 (cell)
(757) 748-6922 (cell)
Christopher Dilks (primary)
Nathan Baltzell (secondary)
DAQ (757) 232-6221 (cell) Sergey Boiarinov
HYDRA (317) 550-9226 (cell) Torri Jeske
Authorized Hall B Solenoid/Torus Operators
Hall B Denny Insley, Morgan Cook, Eugene Pasyuk
Magnet Group Probir Ghosha, Renuka Rajput-Ghoshal
Detector Support Group Brian Eng, Pablo Campero, Tyler Lemon
DC Power Onish Kumar, Sarin Philip
  • Note, all non-JLab numbers must be dialed with an area code. When calling from a counting-house landline, dial "9" first.
  • To call JLab phones from outside the lab, all 4-digit numbers must be preceded by 757-269
  • Click Here to edit Phone Numbers. Note, you then also have to edit the current page to force a refresh.

Click Here to edit Phone Numbers. Note, you then also have to edit this page to force a refresh.


CLAS12 Engineering Run, Winter 2018
Beam energy 10.6 GeV (5 pass)
Important: Document all your work in the logbook!
Remember to fill in the run list at the beginning and end of each run (clas12run@gmail.com can fill the run list)

RC: Silvia Niccolai

  • (757) 575-7540
  • 9 575 7540 from Counting Room
  • silvia@jlab.org

PDL: Maurizio Ungaro

  • (757) 876-1789
  • 9 876-1789 from Counting Room
  • ungaro@jlab.org


  • Note 1: Be very mindful of the background rates in the halo counters, rates in the detectors, and currents in the SVT for all settings to ensure that they are at safe levels.
  • Note 2: At the end of each run, follow the DAQ restart sequence "end run", "abort", "reset", "download", "prestart", "go". After DAQ prestart is complete reboot the scaler IOCs with the command: iocjscalerRestartAll.sh. Note: After each step, make sure it is complete in the Run Control message window. If a roc has crashed, find which one it is and issue a roc_reboot command and try again. Contact the DAQ expert if there are any questions.
  • Note 3: Nominal beam positions: 2C21 (X=0.0 mm, Y=0.0 mm), 2C24 (X=0.0 mm, Y=0.7 mm), 2H01 (X=0.3 mm, Y=-0.6 mm)
  • Note 4: With beam to the Faraday Cup, typical rates pn all halo counters upstream from the target should be either 0 or of the order of few counts. Count rates in the range of tens or more may indicate bad beam tune or bleed-through from other Halls.

Run Plan:

(last update 2/4 - 14:30)

All studies will take data at 100% torus field (negatives inbending) and 100% solenoid field (positive polarity on supply). The beam position should be as indicated above. Make sure FSD thresholds are set correctly for whatever current is selected (refer to instructions in the "Establish-physics quality beam" procedure at [1]), integration time is set to 5 ms, and that the orbit locks are on.

  • Take 2 hour data runs with PROD/elec_htcc_1phe_pcal_300.trg at 30 nA with the following DC HV and thresholds:
    • R1: #9/-45 mV, R2: #10/-65 mV, R3: #10/-60 mV
    • R1: #8/-30 mV, R2: #10/-65 mV, R3: #9/-45 mV
    • R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
  • Take data at 35 nA with PROD/elec_htcc_1phe_pcal_300.trg until morning; runs should be 2 hrs in length. Use R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
  • Hall B work for Monday:
    • Ramp down solenoid (torus can stay up) (RC)
    • Empty the hydrogen target (Hall B Engineering)
    • Complete shielding addition outside scattering chamber (Hall B Engineering)
    • Restore beamline (Hall B Engineering)
    • Replace FT-Hode mezzanine board (N. Zachar)
    • Work on DC cable swaps (M. Cook + M. Mestayer)
    • Work on vacuum gauge (D. Anderson)
    • Investigate polarity of busy signal (S. Boyarinov)
    • Setup gated/ungated scalers and clock scalers (S. Boyarinov)
    • SAF111 walkthrough (E. Pasyuk)
    • Pass change (5-pass to 3-pass)


General Instructions:

  • For a given beam current, compute the FSD thresholds according to the Establish Physics Quality Beam document. Call MCC to update the values. Contact the beamline expert if there are questions about setting the FSD thresholds.
  • The main lights in the Hall (dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
  • Do not run more than 60 minutes above 30 nA with 5-pass beam without the beam blocker in front of Faraday cup. Put beam blocker in for long running at high currents for 5 pass operations.
  • Turn DC HV off only for beam tuning; if no beam is available or when beam is stable, keep them on even if you are not taking data.
  • In case of loss of communication with IOCBTARG, follow instructions at https://logbooks.jlab.org/entry/3502218
  • With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.
  • All jscaler iocs (iocjscalerX) on the health screen (under DAQ tab) must be restarted after every DAQ prestart is completed.
  • Check that no unecessary beamline-related screens are open. This includes particularly the big beamline overview screen, but also and any motor/harp/collimator screens, and ioc health screens.

Every Shift:

  1. Follow run plan as outlined by RC
  2. If any concern about beam stability, ask MCC if orbit locks are on (they should be).
  3. Keep shift summary up to date in HBLOG. Record all that happens.
    • Check on white board all scalers, strip charts and monitoring plots that need to be logged regularly
    • Document any beam condition change and send scaler GUIs to HBLOG
    • Fill out BTA hourly. Click "Load from EPICS" to automatically fill the left side.
    • Fill and submit the shift checklist in the logbook
  4. Perform 2H01A harp scan once per shift or when beam conditions have changed, based on beam monitors (BPMs, halo rates, beam-viewer). During harp scans the HV for DC and HTCC should be OFF.

Every Run:

  1. Log screenshots of:
    • main scaler GUI display
    • Detector occupancy plots
    • Trigger rate gui
    • Beam strip charts


Clas12design.png