Engineering Run

From clas12-run
Jump to navigation Jump to search
[edit]
Role Phone Number
Hall B Run Coordinator (757) 575-7540 (cell)
Hall B Physics Division Liaison (757) 876-1789 (cell)
MCC 7048
Crew Chief 7045
Crew Chief (757) 876-3367 (cell)
Program Deputy (757) 876-7997 (cell)
RadCon (757) 876-1743 (cell)
Gate House Guard 5822
Location Phone Number
Hall B Floor 5165
Hall B Space Frame 5170 and 5171
Hall B Forward Carriage 5371
Hall B Gas Shed 7115
Hall B Counting House 5244 (Shift Expert)
Hall B Counting House (757) 329-4846 (Shift Expert cell)
Hall B Counting House 5245 or 5126 (Shift Worker)
Hall A Counting House 5501
Hall C Counting House 6000
Hall D Counting House 5504
Hall B System Phone Number On-Call Person
Engineering (757) 748-5048 (cell)
(757) 897-9060 (cell)
Engineering On-Call (primary)
Denny Insley (secondary)
Slow Controls (757) 748-6922 (cell) Nathan Baltzell
Beamline (757) 303-3996 (cell) Eugene Pasyuk
DC (757) 218-4372 (cell)
(757) 748-5048 (cell)
Florian Hauenstein (primary)
Engineering On-Call (secondary)
SVT/MVT/MM (757) 541-7539 (cell)
(757) 753-7769 (cell)
Yuri Gotra (primary)
Rafo Paremuzyan (secondary)
ECAL (757) 810-1489 (cell) Cole Smith
FTOF/CTOF/CND (757) 344-7204 (cell) Daniel Carman
ALERT (757) 329-4844 (cell) Raphael Dupré
HTCC/LTCC (757) 344-7174 (cell) Youri Sharabian
FT (757) 344-1848 (cell) Raffaella De Vita
BAND (757) 310-7198 (cell) Florian Hauenstein
RICH (757) 344-3235 (cell)
(757) 748-6922 (cell)
Christopher Dilks (primary)
Nathan Baltzell (secondary)
DAQ (757) 232-6221 (cell) Sergey Boiarinov
HYDRA (317) 550-9226 (cell) Torri Jeske
Authorized Hall B Solenoid/Torus Operators
Hall B Denny Insley, Morgan Cook, Eugene Pasyuk
Magnet Group Probir Ghosha, Renuka Rajput-Ghoshal
Detector Support Group Brian Eng, Pablo Campero, Tyler Lemon
DC Power Onish Kumar, Sarin Philip
  • Note, all non-JLab numbers must be dialed with an area code. When calling from a counting-house landline, dial "9" first.
  • To call JLab phones from outside the lab, all 4-digit numbers must be preceded by 757-269
  • Click Here to edit Phone Numbers. Note, you then also have to edit the current page to force a refresh.

Click Here to edit Phone Numbers. Note, you then also have to edit this page to force a refresh.


CLAS12 Engineering Run, Fall 2017
Beam energy 10.6 GeV (5 pass)
Torus : 3770 A (100% field); Solenoid : 1208 A (50% field)
Important: Document all your work in the logbook!

RC: Daniel S. Carman

  • (757) 575-7540
  • 9 575 7540 from Counting Room
  • carman@jlab.org

PDL: Eugene Pasyuk

  • (757) 876-1789
  • 9 876-1789 from Counting Room
  • pasyuk@jlab.org

Run Plan:

  • All studies for the next few shifts will take place with the empty hydrogen target, 100% torus field (negatives bending in), 50% solenoid field
  • Tune the beam to the Faraday Cup and complete harp scans at 2C21, 2C24, and 2H01. These scans should match the standard plots (see logbook links under "Beam Tuning")
  • Perform a beam scan across the target using the horizontal correctors at 2H01 by several millimeters in each direction to find the center of the target. Move in 0.5 mm steps and record the 4 downstream halo counter rates at each position. Center the beam at the horizontal position that minimizes and balances the rates. Repeat the scan in the vertical direction by several millimeters in each direction to find the center of the target. The scans should proceed in each direction until the walls of the target are sensed. Record all rates in a table in the logbook
  • Position the beam at the center of the target and turn on the FT-Cal HV and LV (contact the expert for instructions) and check the beam centering using the scaler GUI. Record the rates in the logbook. Due to the lack of cooling in FT-Cal, do not leave the power on for more than 1 hr
  • Once beam tuning is complete move the beam blocker in (beam should be off for this), ask for 1.5 nA and ask MCC to unmask the FSD.
  • Ask MCC to use BPM current readings from 2C24 and 2H01 for current lock (see https://logbooks.jlab.org/entry/3502484)
  • Turn on the Forward Carriage detectors: ECAL, FTOF; check rates and record them in the logbook;
  • If rates are consistent with previous good beam tune, proceed to turning on LTCC, DC, HTCC;
  • Turn on CTOF and CND;
  • Turn on FT-Hodo (FTH on epics);
  • If rates are acceptable, contact Y. Gotra to turn on SVT and M. Defurne to turn on MVT and FTT; while Yuri will monitor the SVT, increase the beam current to 5 nA: to be able to do that, FSD thresholds that were set for 1.5 nA will have to be scaled up according to the current (the new thresholds have to be communicated to MCC that will set them in the system).
  • Once all detectors are on, take data (PROD configuration and trigger_prod.trg) and online monitoring (CED and CLAS12MON); the run_control is open in a VNC session clonpc18: in case a run is already in progress, stop it and start a new run;
  • Take data at different currents: duration and beam intensity will be established by beamline expert and SVT expert; for each setting record detector rates from scaler GUI and trigger rates. For the higher beam currents, the DAQ rates will be too high (> 10 kHz). Contact the DAQ expert for instructions to change the trigger configuration file to set a higher ECAL energy threshold.
  • At the highest current setting, perform two 30 min runs with different trigger files: trigger_htcc.trg and trigger_htcc_pcal.trg
  • Note: For each beam energy, record the detector rates in the logbook.
  • Whenever beam is off but Hall A or C have beam, checks rates and beam current monitor readings looking for possible bleedthrough.


General Instructions:

  • During beam tune and harp scans Hall-B halo FSD must be masked.
  • The main lights in the Hall(dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
  • Do not run more than 60 minutes above 30 nA without the beam blocker in front of Faraday cup. Put beam blocker in for long running at high currents.
  • Turn DC HV off only for beam tuning; if no beam is available or when beam is stable, keep them on even if you are not taking data.
  • In case of loss of communication with IOCBTARG, follow instructions at https://logbooks.jlab.org/entry/3502218
  • With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.

Beam Tuning:

  • Whenever preparing to receive beam, make sure the following conditions are established: all CLAS12 detectors are off and target is empty. Turn DC HV off, leaving LV on. For SVT, MVT, FTH and FTT, first turn HV off and then LV off. For any problem, consult with the expert-on-call.
  • Establish beam to the tagger yoke first:
    1. ask MCC to energize the tagger dipole magnet and set the current as needed for dumping the beam in the designated dump on the tagger yoke. MCC will ask you to change (set) the beam delivery mode.
    2. position the \blank" collimator on the beam (this is a collimator block, 30 cm long Ni cylinder, without a hole)
    3. when the tagger magnet is at required setting ask MCC if they are ready to deliver beam to the tagger yoke dump (<=5 nA). It may take ~1 hour for MCC to setup and cleanly transport beam to the tagger yoke dump.
    4. perform harp scans using the wire harp at 2C21 girder and 2c24 (tagger harp). Beam profile, peak position, width and signal/background ratio should be like in https://logbooks.jlab.org/entry/3502250 and https://logbooks.jlab.org/entry/3502252. Ask MCC to retune if needed (e.g. beam is too wide or asymmetric or has large tails),repeat the scan after every tune. Iterate to get acceptable beam profile.
  • send the beam to Faraday Cup dump:
    1. CLAS12 detectors should be OFF, the solenoid magnet current is at 50% its max, torus is at 100%.
    2. ask MCC to degauss and turn the tagger dipole off; while the magnet is being degaussed call the beamline expert (S. Stepanyan) to inform him, you are starting the procedure to send the beam to the Faraday Cup;
    3. position 20 mm collimator on the beam and move \Chromox" screen of the downstream viewer in beam position (if it is not already)
    4. move the beam blocker out: in this configuration beam current readings at 2C24, 2H01 and Faraday Cup should be close.
    5. ask for <= 1 nA, positions, quads settings and rates should be as in https://logbooks.jlab.org/entry/3502404; pay particular attention to halo counter rates: if very different from what shown in the link, call MCC and ask them to verify their settings; note that BOM gains were lowered today and rates should be lower (see https://logbooks.jlab.org/entry/3502559).
    6. make sure beam is stable, beam spot is clearly visible on the chromax viewer and current does not exceed 1 nA;
    7. repeat harp scans at 2c21, 2c24 (tagger harp) and 2h01: profile should be as in https://logbooks.jlab.org/entry/3502250, https://logbooks.jlab.org/entry/3502252 and https://logbooks.jlab.org/entry/3502313. Make sure you select the proper PMT for the analysis. The profile at 2c21a and 2c24 should be as in the scans performed with beam to the tagger. If necessary ask MCC to adjust the beam profile at 2H01 to match the previous scan.



Every Shift:

  1. Follow run plan as outlined by RC
  2. If any concern about beam stability, ask MCC if orbit locks are on (they should be).
  3. Keep shift summary up to date in HBLOG. Record all that happens.
    • Check on white board all scalers, strip charts and monitoring plots that need to be logged regularly
    • Document any beam condition change and send scaler GUIs to HBLOG
    • Fill out BTA hourly. Click "Load from EPICS" to automatically fill the left side.
    • Fill and submit the shift checklist in the logbook
  4. Perform 2H01A harp scan once per shift or when beam conditions have changed, based on beam monitors (BPMs, halo rates, beam-viewer). During harp scans the HV for DC and HTCC should be OFF.

Every Run:

  1. Log screenshots of:
    • main scaler GUI display
    • Detector occupancy plots
    • Trigger rate gui
    • Beam strip charts


Clas12design.png