Difference between revisions of "Run1 - January 2015"

From Ciswikidb
Jump to navigation Jump to search
Line 63: Line 63:
 
#'''Adjust target offsets per vertical instrumental asymmetry [https://logbooks.jlab.org/entry/3317427 measured], [https://logbooks.jlab.org/entry/3317426 analyzed], and [https://logbooks.jlab.org/entry/3317428 corrected] with new offsets [[media:New_Ladder_Position_Swing16jan15.ods]] '''
 
#'''Adjust target offsets per vertical instrumental asymmetry [https://logbooks.jlab.org/entry/3317427 measured], [https://logbooks.jlab.org/entry/3317426 analyzed], and [https://logbooks.jlab.org/entry/3317428 corrected] with new offsets [[media:New_Ladder_Position_Swing16jan15.ods]] '''
 
#'''[https://logbooks.jlab.org/entry/3317599 Measure] dump rate fraction to determine run times'''
 
#'''[https://logbooks.jlab.org/entry/3317599 Measure] dump rate fraction to determine run times'''
#Measure asymmetry vs. dead-time and beam current
+
#'''Measure asymmetry vs. dead-time and beam current [[Media:Deadtime_spreadsheet.ods]]'''
 
#Measure asymmetry vs. time (stability)
 
#Measure asymmetry vs. time (stability)
 
#Measure asymmetry vs. spot size (included emittance measurement)
 
#Measure asymmetry vs. spot size (included emittance measurement)

Revision as of 20:23, 17 January 2015

Run 1 Journal

Shift leaders should make a MOTTLOG Shift Summary and link to it below. Important READ ALL comments should be included below too...

Shift Summaries

Blank Template - media:MottRun1Database.ods

Wednesday, Jan 14
Thursday, Jan 15
Friday, Jan 16
Saturday, Jan 17
Sunday, Jan 18
Monday, Jan 19

READ ALL

Experiment Goals and Plans

Tasks which have been studied or completed are shown below in bold face.

Prep Work (through Tuesday Jan 13)

  1. Make a photocathode – SL5247-1 made about ~one week ago; QE low at low bias but ~1.8% at 130kV
  2. Test IHA2D00 – the Aurora card was replaced to fix POT sampling and CAMAC wiring fixed for gain
  3. Hi-Pot IP – 3D01 hi-potted, but still bad so moved to Dig#11 holding supply and 3D00 on Dig#12 monitors beam line only
  4. CHL 2K cooldown – 1/13 successful cool down completed
  5. Install laser – first beam test of Hall C laser with division by two rep rate
  6. Test laser RF trigger – Riad is using Hall A laser as reference; appears to be 499/2^N
  7. Verify beam line layout – completed
  8. Build elegant deck – completed and stored at ~grames/elegant/MOTT/
  9. Build qsUtility config file – completed, see below...

Injector Setup and Mott Checkout (Wed Jan 14 - Fri Jan 16)

  1. Restore beam to FC2 @ 6.3 MeV/c - 1/14 task was completed and summarized in link title
  2. Mott test: DAQ FADC/TDC synchronization and event separation with 62MHz; there is a TDC issue that prevents 62MHz so we use 31MHz with 31MHz trigger
  3. Electron bunchlength and transmission from 0-10 uA
  4. Quad center BPMs for momentum measurement
  5. Tested harp IHA2D00 and it works
  6. Scale cryounit for p=5.487 MeV/c and minimize energy spread - 1/14 see entry for link initial setup
  7. Tried bunchlength script - didn't coverge, but looks like with more time can work
  8. Precisely measure beam momentum
  9. Measure beam emittance
  10. Measure energy spread; here is a first attempt vs. capture at our operating energy
  11. Calibrate BCM to FC2; Media:BCM-calibration-slope16jan15.ods
  12. John improved the laser polarization and measured the Hall C laser spot size

Mott Setup and Systematics Testing (Sat Jan 17)

  1. Setup good orbit to Mott here
  2. Set PMT HV here
  3. Set PMT energy thresholds are here
  4. Finally we setup the polarization horizontally; initial "rough in" and the final here
  5. Calibrate PITA vs IHWP IN/OUT
  6. Finalize orbit w/ instrumental asymmetry, TOF and spectra
  7. Adjust target offsets per vertical instrumental asymmetry measured, analyzed, and corrected with new offsets media:New_Ladder_Position_Swing16jan15.ods
  8. Measure dump rate fraction to determine run times
  9. Measure asymmetry vs. dead-time and beam current Media:Deadtime_spreadsheet.ods
  10. Measure asymmetry vs. time (stability)
  11. Measure asymmetry vs. spot size (included emittance measurement)
  12. Measure asymmetry vs. energy spread (includes 2D harp swipes)

Target Foil Extrapolation (Sat Jan 17 - Mon Jan 19)

14 foils to study + 1 thru hole
  • spectra – with typical low ~2 MeV energy threshold
  • statistics – possibly higher ~3 MeV threshold to reduce dump events
Deadtime
  • Semi-int mode we use w/ FADC/TDC/scalar is ~5% @ 1500 Hz
Inelastic fraction
  • Worst case ~200 Hz/det (best case ~25 Hz/det)
  • Energy threshold will be defined to set this value
  • Time veto is tricky and too risky at 62 MHz
Assuming I=5uA, R<1500Hz, 200Hz/det background
  • 28 hours * 1.2 / 8 = 4-5 shifts
  • dP/P sets N_elastic (using 1σ analysis cut of all 4 det)
  • Measurement of of inelastic (dump) events figures into run time
140112 runtimes.png

Procedures

How to contact people

Joe's cell
757-344-0188

How to reach the Mott logbook

Mott logbook is here

How to know who's on shift

140112 shifts.png

How to be a shift worker

Beam Driver = Shift Leader
  1. Control delivered beam, especially adjusting PITA with IHWP=IN/OUT
  2. Make sure FSD (BCM, Target) protection is used
  3. Monitor beam loss and vacuum levels
  4. Save and document settings
  5. Write shift summary in logbook
DAQ Driver
  1. Configure/Start/Stop DAQ
  2. Monitor event rates and maintain dead time <5%
  3. Coordinate run start/stop
  4. COPY run information into standard excel sheet
Analysis Driver
  1. Decode, analyze and inspect runs
  2. COPY run information into standard excel sheet
  3. Determine number of events needed for IHWP=IN and OUT

How to measure emittance

Beam Setup
  1. We measure the beam emittance and Twiss at entrance of MQJ0L02 by varying MQJ0L02 and observing response on harp IHA0L03
  2. To simplify matters we turn off the intervening quadrupoles (MQJ0L02A = MQJ0L03A =MQJ0L03 = 0)
  3. Obviously, make sure beam can transports from MQJ0L02 to IHA0L03 w/ those quads off (use BPM's and viewers)
  4. The configuration changes MQJ0L02 B for 21 K1 values (-3.0, -3.2, … , -5.8, -6.0); this takes ~45 minutes, so a smaller data set could be used too
qsUtility
  1. We use program named qsUtility to automatically to make the measurements and analyze the data
  2. The measurement configuration file is here and can also be used as a template /cs/prohome/apps/q/qsUtility/pro/fileio/config/IHA0L03_jmg1.xml
  3. qsUtility is documented here
qsUtility assumes v=c
  1. One must scale the Energy [MeV] entry box as the tool uses this formula B'L [G] = K1[1/m^2] * L[m] * E[MeV] * 10/0.2998

How to measure momentum

Note quads used for centering
  1. MQJ0L02 = IPM0L02
  2. MQJ0L03 = IPM0L03
  3. MQD5D00 = IPM5D00
  4. MQD5D01 = IPM5D01
Center quads
  1. Mike Spata suggests standard dithering, as we do for solenoids
  2. When complete update the BPM .SOF field and log result
Momentum measurement
  1. Excite minimum number of correctors and record values
  2. Set or measure BL using calculation on MDL0L02 control screen
  3. Make note of BL for zeroing IPM0L02-IPM0L03 and IPM5D00-IPM5D01 with (intervening quads OFF, correctors OFF or recorded)
  4. Calculate momentum from KE as p = sqrt [T*(2m+T)], so T = 5.0 MeV => p 5.487 MeV/c
  5. Calculate fraction KE spread as dT/T = (T+2m)/(T+m) * dp/p, so dT/T=1.09 * dp/p @ T=5.0

How to use Elegant files

Elegant files for 2D, 3D, 5D, 0L regions
  1. locate /grames/elegant/MOTT/mott3/
  2. set mott3.ele beamline to be either 0L, 2D, 3D, 5D
  3. set mott3.ele emittance, Twiss and momentum spread
To run
  1. Copy files to local area
  2. Interactively: Start IEE from terminal and then load elegant file: /grames/elegant/MOTT/mott3/mott3.ele
  3. Command: From terminal execute elegant mott3.ele