The HPS Run Wiki

From hps run
Jump to navigation Jump to search


[edit]

RC: Maurik Holtrop

  • (757) 575-7540
  • 9 575 7540 from Counting Room

PDL: Stepan Stepanyan

Every Shift:

  1. Follow run plan as outlined by RC
  2. Once BPMs are calibrated, ask MCC if orbit locks are on, they should be.
  3. Keep shift summary up-to-date in HBLOG. Record all that happens.
  4. Document any beam condition change and send scaler GUIs to HBLOG
  5. Send "scaler_hps" GUI to logbook at least twice per shift or at any time run conditions change
  6. Peform 2H02A harp scan once per shift or when beam conditions have changed, based on beam monitors (BPMs, halo rates, beam-viewer)
  7. Fill out shift checklist in the logbook, HBLOG, using template at least ones per shift or when run conditions change
  8. Continuously check quality of data
  9. With any issue contact On-Call Experts or RC.

SVT Instructions

Before sending beam to Faraday cup, verify (and page SVT expert if otherwise):

  • SVT should be open: "Position" at 0.000 mm in scaler GUI
  • SVT HV is off: all red/green indicators RED in SVT bias GUI

The first time sending beam to the Faraday cup after the hall is closed, page the SVT expert.


Acceptable Beam Conditions:

Before accepting beam, make sure all the conditions are met - beam profile and halo rates are what you expect (or very close to it). If unsure call to RC, PDL, or beamline expert!

  • Beam optics setting is such that at 2H02A harp the beam profile will be as requested by HPS,wide in X-direction and narrow in Y.
  • This optics setting will make the beam profile at 2C21 harp narrow in both directions, while profile on the "tagger" or 2C24 harp wide in both directions.
  • The halo counter rates before HPS must be low:
    • UPS-L and UPS-R few Hz/nA,
    • if tagger magnet is energized TAG-L/T/T2 ~10Hz/nA [1],
    • if beam is going to Faraday cup dump then tagger counters and downstream counters should count <<1 Hz/nA
  • The halo counter rates on HPS, HPS-L/R/T/SC, depends on the collimator and HPS chicane settings, but should not be more than 100 Hz/nA[2]
  • As halo counters, positions on BPMs and the settings of correctors also must be close to what where before.

Always read previous log entries, compare settings of BPMs and correctors with previous settings using scaler_hps GUI.

Every Run:

  1. a
  2. b
  3. c
  4. d


MCC Daily Meetings



Run Plan: April 17-22, 2015 (day/swing/owl)

April 17 Swing and Saturday April 18 Owl are cancelled. Saturday April 18 Day shift should count on coming in. During week days, Mon-Thursday, there will be no Day shifts due to work in the hall. Friday day shift may happen, so be prepared.

Short Term Schedule: Restore Beam

We will be running with 1.05GeV beam. This beam needs to be carefully restored, first to the faraday cup, then the alcove. Before sending beam to the alcove, call the RC.

  1. MCC re-tunes upstream beam into the tagger dump. See acceptable beam documentation before moving on;
  2. When beams are acceptable, MCC restores beams to alcove;
    1. Notify RC or SVT expert. We want someone at MCC to monitor progress.
    2. SVT must be open, collimator must be in.
  3. When decent beams have been reestablished, calibrate downstream strip-line BPMS:
    1. With orbit locks off, ask MCC to slowly ramp up the current of the beam (5 - 60 nA). Look on the strip charts for a correlation between current and beam position.
    2. Make a log book entry of the results. The data can be analyzed later from the archives, but we want to know if there is a region where we can run with orbit locks on, or if orbit locks can only be used for a fixed current.
  4. Post calibration, require good spot on Chromax, low counts on halo counters, have MCC turn on orbit locks if current is stable, and then set-up chicane.
    1. Note: If you change current, turn orbit locks off first
  5. Scan target vertically and horizontally, measure halo rates vs target;
  6. Call SVT expert. Expert will turn on SVT.
  7. Take data with SVT open and do SVT timing in.
  8. Take data. Subsystem commissioning studies: more trigger commissioning studies, beam trip studies once orbit locks are on.

When we're back, proceed with program

MCC works on beam optics and matching, and tunes beam to tagger

  • After MCC finishes beam tune and upstream bpms are calibrated
    • record harp scans at 2C21 and 2C24. These must be good scans, good S/N, no tails, and low halo count rates before proceeding.

Standards are on this page: ACCEPTABLE BEAM CONDITIONS.

    • make sure no bleedthrough-- counts when no beam?
    • After beam tune is done send HPS scaler GUI to the logbook with comments

Restore Beam to the Hall-B Dump

  • Ask MCC to turn OFF the beam.
  • Turn off tagger magnet and change beam configuration to "bta" GUI to "Electron"
  • Have MCC degauss magnet
  • Make sure target is out
  • Insert Chromax screen on the downstream viewer
  • 4mm SVT Protection collimator in place
  • Restore 1 nA CW beam and have MCC bring beam to y~-5mm; x~5mm on the Chromax screen. (distance between dots=5mm). Record spot. Record scalers. Repeat and record 2C21 and 2C24 harp scans and corrector settings. We need these for next time!
  • Record position at 2H02 harp. Repeat at 10 nA. Must have good spots, nominal sizes, no tail to proceed. Position ok?
  • record scalers and beam location on screen.
  • establish orbit locks

Energize Chicane

  • follow standard procedures in Beamline manuals for procedures and settings.
  • beam spot on Chromax should be unmoved. If not, tune Frascati slightly. See caution below.

Be very careful when changing magnet currents when beams are on. Must enter new current ACCURATELY. Small steps (few amps) only.

  • Turn beam off and insert HPS target, 4um W. Restore beam. Check count rates.
  • Do horizontal scan of beam on target. Using table provided, first change Frascati settings, then PS settings to move beam left and right on the target with ~1mm step. Small changes only. Return to nominal beam position.
  • Do vertical scan of target at nominal beam position. Measure halo counter/ecal rates vs target position. Record data and graph.

Are we centered? Beamline Expert should enter new target positions if not.

  • Do scan of SVT collimator, measuring counter rates vs SVT collimator position with nominal beam position.
  • If Omar and beamline expert are available during day or swing, do SVT Wire Scan. This still needs an expert. Orbit locks must be temporarily removed to move beam horizontally with upstream correctors, if needed. Restore orbit locks when done.

Subsystem Commissioning Studies. Begin Data Taking.

DO NOT RUN MORE THAN 30 MINUTES ABOVE 50 nA WITHOUT THE BEAM BLOCKER
PUT BEAM BLOCKER IN FOR LONG RUNNING AT HIGH CURRENT

  • Make sure DAQ is OK for data taking
  • More Trigger commissioning data runs. See Valery's note on the run Wiki under commissioning trigger.
  • If orbit locks are on, call Rafayel for beam trip study. Take 4 hours of beam trip data with wire up; take 4 hours of beam trip data with wire down.
  • Absent other requests, take data at 50 nA. Be sure to block Faraday cup if higher current.


Beam
Energy ~2.0 GeV
Current < 200.0 nA CW
Position
X Y
~0 mm ~0 mm
Profile
X Y
< 0.1 mm < 0.1 mm
Target
#1 0 mm
Magnets
PS Current 0 A
Chicane Dipole #1 0 A
Chicane Dipole #2 0 A
DAQ
Configuration ___________________
Configuration file
Prescales
Thresholds
Events Per Run
Dead Time




Trigger
FADC GTP
NSB/NSA 20/100 ns Samples Before/After 3/3
Readout Threshold 12 ADC Seed Threshold 80 MeV
SSP
Singles-0 Singles-1
# Hits >2 >2
Cluster Energy 0.1 < E < 2.5 GeV 0.5 < E < 1.2 GeV
Pairs-0 Pairs-1
Cluster Energy 0.9 < E < 1.3 GeV 0.1 < E < 0.6 GeV
Energy Sum 0.19 GeV < E < 2.2 GeV 0.21 < E < 1.0 GeV
Energy Difference dE < 1.2 GeV dE < 0.65 GeV
Coplanarity N/A Theta < 40 deg
Energy Slope N/A > 0.6 GeV
TI Prescales
Singles-0 Singles-1 Pairs-0 Pairs-1
0 0 0 0


Long Term Schedule Proposal PowerPoint

AccumulatedCharge.png


Run Coordinator
March 1 - March 11 Stepan Stepanyan
March 12 - March 18 Francios-Xavier Girod
March 19 - April 1 John Jaros
April 2 - April 8 Nathan Baltzell
April 9 - April 15 Takashi Maruyama
April 16 - April 22 Maurik Holtrop
April 23 - April 29 Raphael Dupre
April 30 - May 6 Takashi Maruyama
Physics Division Liaison
Stepan Stepanyan
Beamline On-Call
NOW Takashi Maruyama
DAQ On-Call
NOW Sergey Boyarinov
ECAL On-Call
March 1 - March 9 Andrea Celentano
March 9 - March 23 Nathan Baltzell
March 23 - March 30 Holly Vance
March 30 - April 13 Gabriel Charles
April 13 - April 20 Raphael Dupre
April 20 - April 27 Michel Garcon
April 27 - May 4 Holly Vance
SVT On-Call
March 8 - March 14 Sho Uemura
March 15 - March 28 Omar Moreno
March 29 - April 4 Pelle Hansson
April 5 - April 8 Omar Moreno
April 9 - April 19 Matt Graham
April 20 - April 26 Tim Nelson
April 27 - May 4 Sho Uemura
SlowControls On-Call
March 1 - March 18 Hovanes Egiyan
March 19 - April 1 Stepan Stepanyan




Svtpic.png

Ecalpic.png