Absolute Beam Energy

From Ciswikidb
Revision as of 09:41, 11 November 2015 by Suleiman (talk | contribs)
Jump to navigation Jump to search

Summary of Beam Properties in JLab Injector

Beam Kinetic Energy, T (MeV) 3.0 – 7.75
Beam Current (µA) 0.01 – 100
Absolute Beam Energy 0.36%
Relative Beam Energy 0.1%
Energy Resolution (Spread), σT /T 0.06%
Beam Size, σx,y (mm) 1 – 2
Goals:
 - Increase beam kinetic energy to 8.5 MeV.
 - Reduce the uncertainty on the absolute beam energy to <0.1% and achieve a relative beam energy of <0.02%.


New Dipole Magnet

  1. Magnet Design: media:new_5MeV_dipole.pdf media:new_5MeV_dipole.doc
  2. Magnet Drawings (change txt to tar): media:05-06-14_ISSUED_DL_MAG_DRAWINGS.txt
  3. A detailed examination of the MDL field map and the TOSCA model of this "5 MeV" dipole

Jay Benesch (JLab Tech note 15-017, September 9, 2015): media:TN-15-017_MDL_FieldMap.pdf media:Graphs_MDL.pdf media:Graphs_MDL.docx


New Hall Probe

  1. GMW DTM-151-PS Digital Teslameter, 20 Bit Resolution, RS-232 Interface, Panel Mtg media:G3_MAN_DTM-151-S.pdf
  2. GMW MPT-231-8s Miniature Hall Probe with thermal sensor, High Sensitivity 0.03T, 0.06T, 0.12T, & 0.3T, 8m shielded cable. 0.01% accuracy, resolution to 2 ppm, and a temperature stability of 10 ppm/°C.


PEPPo Results

Momentum Measurement:

Cryounit Gradient:

  • Upper limit of the electron beam energy at the CEBAF 2D injector spectrometer and its functionality

Jonathan Dumas, Joe Grames, and Eric Voutier Media:JLAB-TN-08-086.pdf