Difference between revisions of "Documents"

From Cuawiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 63: Line 63:
 
* [https://wiki.jlab.org/cuawiki/images/f/fa/User_Guide.pdf A very short User Guide].
 
* [https://wiki.jlab.org/cuawiki/images/f/fa/User_Guide.pdf A very short User Guide].
  
* Information for 2023 update to Ho San KO GEANT4
+
* Information for 2023 update to Ho San KO GEANT4 model: [[Media:NPS_GEANT.pdf | NPS_GEANT.pdf]]
 +
 
 +
==== NPS Beamline Technical Drawings ====
 +
* [[Media:67508-00026_S1_R-_BEAMLINE_NPS_ASSY-1.pdf | Overview Drawing 67508-00026]]
 +
* [[Media:67173-56159_S1_R-A_HALL-C_NPS_EXPERIMENT_BEAMLINE_SPOOL_PIECE-A.pdf |Spool Piece-A]]
 +
* [[Media:67173-56160_S1_R-B_HALL-C_NPS_EXPERIMENT_BEAMLINE_SPOOL_PIECE-B.pdf |Spool Piece-B]]
 +
* [[Media:67110-56841_S1_R-_CORRECTOR_ASSY_NPS.pdf | Corrector Coil main drawing]]
  
 
=== NPS software and calibration ===
 
=== NPS software and calibration ===

Latest revision as of 07:19, 10 July 2023

Publications

PAC Presentations and NPS Physics Notes

PAC46: TCS

PAC45: WACS polarization observables

PAC43: WACS polarization observables, TCS LOI

PAC42: WACS, pi0 photoproduction

PAC40: DVCS/pi0 cross sections, SIDIS pi0, WACS

Physics Notes

DVCS/pi0 Cross Sections and SIDIS pi0

Wide-Angle Compton Scattering (WACS)

WACS Neutral Pion Photoproduction

Magnet

Calorimeter

NPS Geant4 simulation for Hall C DVCS

NPS Beamline Technical Drawings

NPS software and calibration

Crystal characterization

  • Results of tests of subsets of the 10+5 SICCAS produced crystals (2014) at Giessen, BNL, and Caltech
  • Results of crystals 2, 3, 6, 8, and 9 from Giessen:
  • PbWO4 references:
  • P. Adzic et al., "Radiation Hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter", CMS Note 2009/016
  • A.A. Annenkov et al., "Lead Tungstate scintillation material", NIM A 490 (2002) 30-50
  • P. Yang et al., "Growth of large-size crystal of PbWO4 by vertical Brigdman method with multi-crucibles
  • R. W. Novotny, "The Electromagnetic Calorimetry of the PANDA Detector at FAIR", J. Phys. Conf. Serv. 404 012063 (2012)

PMTs

  • PMT specs: Hamamatsu R4125, 19mm diameter, gain is about 8.7E+5 at 1.5kV max. anode voltage and rise time 2.5ns. This PMT was also used in Primex and we have designed a new active voltage divider that improves the performance of the PMT by a factor of 25. See the report at the 2012 IEEE NSS/MIC/RTSD conference by V. Popov and H. Mkrtchyan.

Hamamatsu PMT Specs 11 Oct 2013, C.E.Hyde

  • specs on standard 1" PMTs:
R8619 10 stage PMT
R9800 8 stage PMT
Low profile (short) 29mm R7111 PMT Media:R7111.pdf
Magnetic Field Response Media:R7877_Magnetic_Field_Characteristics.pdf
Cathode Lifetime data Media:QG1369A_R7877_Life.pdf
Magnetic Field Response Media:R4125_Effects_of_Magnetic_Fields.pdf
Cathode Lifetime data Media:R4125_(100_uA_&_1000_h)_QG0016B.pdf

NPS Dose Rate Estimates


Scattering Chamber Information:

  • outer diameter = 45 inches
  • inner diameter = 43.125 inches
  • distance beam line to SHMS window = 1.25 inches

So for a point target, the minimum angle is 58 mr or 3.4 degrees. For an extended target you will need to adjust, it becomes about 4 degree for a 15 cm target. So assume 3.5 degrees as rough number.


Study of possibilities for larger beam pipe assemblies

Energy spectra for electrons, photons, positrons including fits


Rates and rates per crystal vs. angle relative to beam for: 4 m from target, 6.6 GeV beam energy, 1uA beam current, and 10-cm LH2 target for:

Photon threshold=10 MeV

Photon threshold=3 MeV


History of the NPS (2012)


Light monitoring and Curing System

Notes on Light Monitoring System from Hamlet

Notes on Curing System from Hamlet


Electronics

  • Experimental requirements on hardware:


High Intensity Photon Source