Difference between revisions of "Magnetized Gun References and Documents"
Line 1: | Line 1: | ||
= '''Cathode Solenoid''' = | = '''Cathode Solenoid''' = | ||
+ | |||
* Magnet Drawings: | * Magnet Drawings: | ||
# | # | ||
− | # | + | # |
+ | |||
* Jay Benesch, ''A quick and dirty magnet design for the magnetized beam LDRD proposal'' (JLab Tech Note 15-043, January 17, 2016): [[media:LDRD_Solenoid_model.pdf]] | * Jay Benesch, ''A quick and dirty magnet design for the magnetized beam LDRD proposal'' (JLab Tech Note 15-043, January 17, 2016): [[media:LDRD_Solenoid_model.pdf]] | ||
+ | |||
* Field Maps: | * Field Maps: | ||
Line 13: | Line 16: | ||
# (Bx,By,Bz): [[media:LDRD_map_BxByBz_puck_moly.txt.gz.txt]] (change .gz.txt to .gz) – no steel | # (Bx,By,Bz): [[media:LDRD_map_BxByBz_puck_moly.txt.gz.txt]] (change .gz.txt to .gz) – no steel | ||
# (Bx,By,Bz): [[media:LDRD_map_BxByBz_puck_steel.txt.gz.txt]] (change .gz.txt to .gz) – steel runs from Z=4.8 to Z=5.8 mm | # (Bx,By,Bz): [[media:LDRD_map_BxByBz_puck_steel.txt.gz.txt]] (change .gz.txt to .gz) – steel runs from Z=4.8 to Z=5.8 mm | ||
+ | |||
* ''root'' macro to plot Bz vs z: [[media:GunMagnet_Bz.gif]] (change .txt to .C) [[media:GunMagnet_Bz.txt]] | * ''root'' macro to plot Bz vs z: [[media:GunMagnet_Bz.gif]] (change .txt to .C) [[media:GunMagnet_Bz.txt]] | ||
+ | |||
= '''Presentations''' = | = '''Presentations''' = |
Revision as of 10:55, 6 June 2016
Cathode Solenoid
- Magnet Drawings:
- Jay Benesch, A quick and dirty magnet design for the magnetized beam LDRD proposal (JLab Tech Note 15-043, January 17, 2016): media:LDRD_Solenoid_model.pdf
- Field Maps:
- Bz(0,0,z): media:LDRD_map_Bz_puck_moly.txt – no steel
- Bz(0,0,z): media:LDRD_map_Bz_puck_steel.txt – steel runs from Z=4.8 to Z=5.8 mm
- (Bx,By,Bz): media:LDRD_map_BxByBz_puck_moly.txt.gz.txt (change .gz.txt to .gz) – no steel
- (Bx,By,Bz): media:LDRD_map_BxByBz_puck_steel.txt.gz.txt (change .gz.txt to .gz) – steel runs from Z=4.8 to Z=5.8 mm
- root macro to plot Bz vs z: media:GunMagnet_Bz.gif (change .txt to .C) media:GunMagnet_Bz.txt
Presentations
- Magnetized Beam Simulations (LDRD)
Fay Hannon, MEIC Collaboration Meeting, Spring 2016.
- Magnetized Beam Update (LDRD)
R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Spring 2016.
- media:Magnetized_JLEIC_Coll_March2016_Suleiman.pdf
- media:Magnetized_JLEIC_Coll_March2016_Suleiman.pptx
- Generation and Characterization of Magnetized Bunched Electron Beam from a DC High Voltage Photogun
R. Suleiman et al., abstract submitted to APS April 2016 meeting [1]
- LDRD: Magnetized Source
R. Suleiman and Matt Poelker, JLEIC Nuclear Physics meeting, November 20, 2015.
- Development of High Current Bunched Magnetized Electron DC Photo-gun
R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Fall 2015.
- Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler
R. Suleiman and Matt Poelker, MEIC Accelerator R&D Meeting, April 16, 2015.
- media:LDRD_MagBeam_talk_D_Meeting_16April2015.pdf
- media:LDRD_MagBeam_talk_D_Meeting_16April2015.pptx
- 200 mA Magnetized beam for MEIC Electron Cooler (and Backup Slides - MEIC Polarized Electron Source)
R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Spring 2015.
- media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pdf
- media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pptx
- High Current Electron Source for Cooling
R. Suleiman, MEIC Accelerator Design Review, January 15, 2014.
References
- Round-to-Flat Beam Transformation and Applications
Yin-E Sun, COOL15 presentation, media:Yin-E_Sun_COOL15.pdf media:Yin-E_COOL15.pptx
- Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling
P. Piot, EIC14 Proceedings, media:Piot_EIC14.pdf
Talk Slides: media:TUAAUD3_TALK.PDF media:TUAAUD3_TALK.pptx
- Generation of angular-momentum-dominated electron beams from a photoinjector
Y.-E Sun et al., Phys. Rev. ST Accel. Beams 7, 123501 (2004) [2] media:PhysRevSTAB.7.123501.pdf
- Angular-momentum-dominated electron beams and flat-beam generation
Yin-e Sun (Chicago U.) FERMILAB-THESIS-2005-17 media:fermilab-thesis-2005-17.PDF
- Photoinjector generation of a flat electron beam with transverse emittance ratio of 100
P. Piot et al., Phys. Rev. ST Accel. Beams 9, 031001 (2006) [3] media:PhysRevSTAB.9.031001.pdf
- Simple algorithm for designing skew-quadrupole cooling configurations
B. Carlsten and K. Bishofberger, New J. Phys. 8, 286 (2006) [4] media:NewJPhys.8.286.pdf
- Round-to-flat transformation of angular-momentum-dominated beams
Kwang-Je Kim, Phys. Rev. ST Accel. Beams 6, 104002 (2003) [5] media:PhysRevSTAB.6.104002.pdf
- A low emittance, flat-beam electron source for linear colliders
R. Brinkmann, Y. Derbenev, and K. Flöttmann, Phys. Rev. ST Accel. Beams 4, 053501 (2001) [6] media:PhysRevSTAB.4.053501.pdf
- Understanding the focusing of charged particle beams in a solenoid magnetic field
V. Kumar, Am. J. Phys. 77, 737 (2009) media:AJP000737.pdf
- Optical principles of beam transport for relativistic electron cooling
A. Burov et al., Phys. Rev. ST Accel. Beams 3, 094002 (2000) [7] media:PhysRevSTAB.3.094002.pdf
- Advanced optical concepts for electron cooling
Ya. Derbenev, Nucl. Inst. Meth. A 441 223 (2000) [8] media:NuclInstMethA.441.223.pdf
- Adapting Optics for High Energy Electron Cooling
Ya. Derbenev, University of Michigan Report No. UM-HE-98-04, (1998) media:UM-HE-98-04-A.pdf