Magnetized Gun References and Documents

From Ciswikidb
Jump to navigation Jump to search

Cathode Solenoid

  • Solenoid Drawings:
  1. media:haysg_JL0034767-LDRD_RIGHT_COIL.pdf
  2. media:haysg_JL0035043-LDRD_LEFT_COIL.pdf
  3. media:haysg_JL0034810-LDRD_SOLENOID_COIL_ASSEMBLY.pdf


  • Jay Benesch, A quick and dirty magnet design for the magnetized beam LDRD proposal (JLab Tech Note 15-043, January 17, 2016): media:LDRD_Solenoid_model.pdf


  • Jay Benesch, Opera model of magnetized beam gun magnet:
  1. Bz(0,0,z): media:LDRD_map_Bz_puck_moly.txt – no steel
  2. Bz(0,0,z): media:LDRD_map_Bz_puck_steel.txt – steel runs from z=4.8 to z=5.8 cm
  3. Bx, By, Bz(x,y,z): media:LDRD_map_BxByBz_puck_moly.txt.gz.txt (change .gz.txt to .gz) – no steel
  4. Bx, By, Bz(x,y,z): media:LDRD_map_BxByBz_puck_steel.txt.gz.txt (change .gz.txt to .gz) – steel runs from z=4.8 to z=5.8 cm
  5. root macro to plot Bz vs z: media:GunMagnet_Bz.gif (change .txt to .C) media:GunMagnet_Bz.txt


big solenoid center is at Z 27.4 cm.
first focusing solenoid center is Z 56.5 cm
second focusing solenoid center is Z 116.5 cm




  • MLDGT01 Magnetized Gun Solenoid Field Maps from Magnet Measurement Facility (Joe Meyers, August 31, 2016):


MLDGT01 on stand MMF mod.jpg


FILE MEASUREMENT COMMENTS
media:LDGT01_Centerline_Measurements_15-7-21.xlsx Bz Centerline for I=0, 100, 200, 300 and 400A Z=-96cm to +60cm; This was the limit of the length of probe holder.
media:LDGT01_Air_Measurements_15-8-23.xlsx 1.) Bz vs. I for I=0, 100, 200, 300 and 400A 2.) Bz X-scan across the puck position 3.) Bz from Z=+15cm to +21.8cm for X=-2.5cm to +2.5cm; Repeat with Y=-1cm and +1cm Used same coordinate positions for the probe as the puck measurements.
media:LDGT01_Hybrid_Puck_Measurements_16-8-19.xlsx Repeat with above with hybrid puck. The distance between hall probe sensor to face of puck was 2mm.
media:LDGT01_Steel_Puck_Measurements_16-8-22.xlsx Repeat with above with steel puck. The distance between hall probe sensor to face of puck was 2mm.


  • MCRGT Radiabeam STM-02-340-110-NUD Steerer
Radiabeam Field Map: media:RadiaBeam_Steerer_FieldMap.xlsx
Jay's Model (with and without solenoid's steel): media: Radiabeam_GTS_magnetic_model_Jay_28Sept2017.pdf

Presentations

  • Magnetized Electron Beam Development

R. Suleiman et al., JLEIC Collaboration Meeting, Spring 2017.

media:Magnetized_JLEIC_Coll_April2017_Suleiman.pdf
media:Magnetized_JLEIC_Coll_April2017_Suleiman.pptx


  • Magnetized Bunched Electron Beam from DC High Voltage Photogun

R. Suleiman et al., Physics of Photocathodes for Photoinjectors (P3) Workshop, Oct 17-19, 2016

media:JLab_P3_October2016_MagBeam_poster.pdf
media:JLab_P3_October2016_MagBeam_poster.pptx


  • Update on Development of High Current Bunched Electron Beam from Magnetized DC Photogun

R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Fall 2016.

media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pdf
media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pptx


  • Magnetized Beam Simulations (LDRD)

Fay Hannon, JLEIC Collaboration Meeting, Spring 2016.

media:JLEIC_Collab_Meeting_March2016_Fay.pdf
media:JLEIC_Collab_Meeting_March2016_Fay.pptx


  • Magnetized Beam Update (LDRD)

R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Spring 2016.

media:Magnetized_JLEIC_Coll_March2016_Suleiman.pdf
media:Magnetized_JLEIC_Coll_March2016_Suleiman.pptx


  • Generation and Characterization of Magnetized Bunched Electron Beam from a DC High Voltage Photogun

R. Suleiman et al., abstract submitted to APS April 2016 meeting [1]

media:Suleiman_APS_mtg_April_2016_Salt_Lake_City.pdf media:APS_April16_MagBeam.pdf
media:Suleiman_APS_April2016_poster.pdf
media:Suleiman_APS_April2016_poster.pptx


  • LDRD: Magnetized Source

R. Suleiman and Matt Poelker, JLEIC Nuclear Physics meeting, November 20, 2015.

media:Magnetized_JLEIC_NP_Nov2015.pdf
media:Magnetized_JLEIC_NP_Nov2015.pptx


  • Development of High Current Bunched Magnetized Electron DC Photo-gun

R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Fall 2015.

media:Magnetized_Suleiman_MEIC_Coll_Fall2015.pdf
media:Magnetized_Suleiman_MEIC_Coll_Fall2015.pptx


  • Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler

R. Suleiman and Matt Poelker, MEIC Accelerator R&D Meeting, April 16, 2015.

media:LDRD_MagBeam_talk_D_Meeting_16April2015.pdf
media:LDRD_MagBeam_talk_D_Meeting_16April2015.pptx


  • 200 mA Magnetized beam for MEIC Electron Cooler (and Backup Slides - MEIC Polarized Electron Source)

R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Spring 2015.

media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pdf
media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pptx


  • High Current Electron Source for Cooling

R. Suleiman, MEIC Accelerator Design Review, January 15, 2014.

media:Suleiman_MEIC_ElectronSource.pdf
media:Suleiman_MEIC_ElectronSource.pptx


References

  • Extension of Busch’s theorem to particle beams

L. Groening, C. Xiao, and M. Chung, Phys. Rev. Accel. Beams 21, 014201 (2018)[2] media:PhysRevAccelBeams.21.014201.pdf


  • Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique

A. Halavanau et al., Phys. Rev. ST Accel. Beams 20, 103404 (2017) [3] media:PhysRevAccelBeams.20.103404.pdf


  • Round-to-Flat Beam Transformation and Applications

Yin-E Sun, COOL15 presentation, media:Yin-E_Sun_COOL15.pdf media:Yin-E_COOL15.pptx


  • Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling

P. Piot, EIC14 Proceedings, media:Piot_EIC14.pdf

Talk Slides: media:TUAAUD3_TALK.PDF media:TUAAUD3_TALK.pptx


  • Generation of angular-momentum-dominated electron beams from a photoinjector

Y.-E Sun et al., Phys. Rev. ST Accel. Beams 7, 123501 (2004) [4] media:PhysRevSTAB.7.123501.pdf


  • Summary of the angular-momentum-dominated beam experiment (April and May 2004)

Y.-E Sun and P. Piot: media:magBeam_Y.-E.Sun-AprilMay2004.pdf


  • Angular-momentum-dominated electron beams and flat-beam generation

Yin-e Sun (Chicago U.) FERMILAB-THESIS-2005-17 media:fermilab-thesis-2005-17.PDF


  • Photoinjector generation of a flat electron beam with transverse emittance ratio of 100

P. Piot et al., Phys. Rev. ST Accel. Beams 9, 031001 (2006) [5] media:PhysRevSTAB.9.031001.pdf


  • Transverse-to-longitudinal emittance exchange to improve performance of high-gain free-electron lasers

P. Emma, Z. Huang, K.-J. Kim, and P. Piot, Phys. Rev. ST Accel. Beams 9, 100702 (2006) [6] media:PhysRevSTAB.9.100702.pdf


  • Studies in Laser Photo-cathode RF Guns

Xiangyun Chang (Stony Brook University) media:BNL_MagBeam_ThesisChang.pdf


  • First Observation of the Exchange of Transverse and Longitudinal Emittances

J. Ruan et al, Phys. Rev. Lett. 106, 244801 (2011) [7] media:PhysRevLett.106.224801.pdf


  • Simple algorithm for designing skew-quadrupole cooling configurations

B. Carlsten and K. Bishofberger, New J. Phys. 8, 286 (2006) [8] media:NewJPhys.8.286.pdf


  • Round-to-flat transformation of angular-momentum-dominated beams

Kwang-Je Kim, Phys. Rev. ST Accel. Beams 6, 104002 (2003) [9] media:PhysRevSTAB.6.104002.pdf


  • A low emittance, flat-beam electron source for linear colliders

R. Brinkmann, Y. Derbenev, and K. Flöttmann, Phys. Rev. ST Accel. Beams 4, 053501 (2001) [10] media:PhysRevSTAB.4.053501.pdf


  • Understanding the focusing of charged particle beams in a solenoid magnetic field

V. Kumar, Am. J. Phys. 77, 737 (2009) media:AJP000737.pdf


  • Optical principles of beam transport for relativistic electron cooling

A. Burov et al., Phys. Rev. ST Accel. Beams 3, 094002 (2000) [11] media:PhysRevSTAB.3.094002.pdf


  • Advanced optical concepts for electron cooling

Ya. Derbenev, Nucl. Inst. Meth. A 441 223 (2000) [12] media:NuclInstMethA.441.223.pdf


  • Adapting Optics for High Energy Electron Cooling

Ya. Derbenev, University of Michigan Report No. UM-HE-98-04, (1998) media:UM-HE-98-04-A.pdf


Beam Simulation

  • ASTRA: A Space Charge Tracking Algorithm [13]
  • GPT: General Particle Tracer [14]
  • OptiM: A Program for Accelerator Optics [15]