Difference between revisions of "Magnetized Gun References and Documents"

From Ciswikidb
Jump to navigation Jump to search
 
(30 intermediate revisions by the same user not shown)
Line 11: Line 11:
  
  
* Field Maps:
+
* Jay Benesch, Opera model of magnetized beam gun magnet:
 
# B<sub>z</sub>(0,0,z): [[media:LDRD_map_Bz_puck_moly.txt]] – no steel
 
# B<sub>z</sub>(0,0,z): [[media:LDRD_map_Bz_puck_moly.txt]] – no steel
 
# B<sub>z</sub>(0,0,z): [[media:LDRD_map_Bz_puck_steel.txt]] – steel runs from z=4.8 to z=5.8 cm
 
# B<sub>z</sub>(0,0,z): [[media:LDRD_map_Bz_puck_steel.txt]] – steel runs from z=4.8 to z=5.8 cm
 
# B<sub>x</sub>, B<sub>y</sub>, B<sub>z</sub>(x,y,z): [[media:LDRD_map_BxByBz_puck_moly.txt.gz.txt]] (change .gz.txt to .gz) – no steel
 
# B<sub>x</sub>, B<sub>y</sub>, B<sub>z</sub>(x,y,z): [[media:LDRD_map_BxByBz_puck_moly.txt.gz.txt]] (change .gz.txt to .gz) – no steel
 
# B<sub>x</sub>, B<sub>y</sub>, B<sub>z</sub>(x,y,z): [[media:LDRD_map_BxByBz_puck_steel.txt.gz.txt]] (change .gz.txt to .gz) – steel runs from z=4.8 to z=5.8 cm
 
# B<sub>x</sub>, B<sub>y</sub>, B<sub>z</sub>(x,y,z): [[media:LDRD_map_BxByBz_puck_steel.txt.gz.txt]] (change .gz.txt to .gz) – steel runs from z=4.8 to z=5.8 cm
 +
# ''root'' macro to plot B<sub>z</sub> vs z: [[media:GunMagnet_Bz.gif]] (change .txt to .C) [[media:GunMagnet_Bz.txt]]
  
  
* ''root'' macro to plot B<sub>z</sub> vs z: [[media:GunMagnet_Bz.gif]] (change .txt to .C) [[media:GunMagnet_Bz.txt]]
+
* Jay Benesch, Opera model of magnetized beam gun magnet B<sub>z</sub>(0,0,z): [[media:LDRD_map_Bz_puck_moly_twoBeamLineSolenoids.txt]]
 +
:: big solenoid center is at Z 27.4 cm.
 +
:: first focusing solenoid center is Z 56.5 cm
 +
:: second focusing solenoid center is Z 116.5 cm
  
 +
 +
 +
* '''''LDRD GTS Magnetic Model''''', Jay Benesch (October 1, 2017): [[media:GTS_magnetic_model_Jay_01Oct2017.pdf]]
 +
 +
 +
 +
 +
* MLDGT01 Magnetized Gun Solenoid Field Maps from Magnet Measurement Facility (Joe Meyers, August 31, 2016):
 +
 +
 +
 +
[[file:MLDGT01_on_stand_MMF_mod.jpg|center|300px|]]
 +
 +
 +
 +
{| class="wikitable"
 +
|-
 +
| '''FILE'''
 +
| '''MEASUREMENT'''
 +
| '''COMMENTS'''
 +
|-
 +
| [[media:LDGT01_Centerline_Measurements_15-7-21.xlsx]]
 +
| Bz Centerline for I=0, 100, 200, 300 and 400A
 +
| Z=-96cm to +60cm; This was the limit of the length of probe holder.
 +
|-
 +
| [[media:LDGT01_Air_Measurements_15-8-23.xlsx]]     
 +
| 1.) Bz vs. I for I=0, 100, 200, 300 and 400A  2.) Bz X-scan across the puck position  3.) Bz from Z=+15cm to +21.8cm for X=-2.5cm to +2.5cm; Repeat with Y=-1cm and +1cm
 +
| Used same coordinate positions for the probe as the puck measurements.
 +
|-
 +
| [[media:LDGT01_Hybrid_Puck_Measurements_16-8-19.xlsx]]
 +
| Repeat with above with hybrid puck.
 +
| The distance between hall probe sensor to face of puck was 2mm.
 +
|-
 +
| [[media:LDGT01_Steel_Puck_Measurements_16-8-22.xlsx]]
 +
| Repeat with above with steel puck.
 +
| The distance between hall probe sensor to face of puck was 2mm.
 +
|}
 +
 +
 +
* MCRGT Radiabeam STM-02-340-110-NUD Steerer
 +
:: Radiabeam Field Map: [[media:RadiaBeam_Steerer_FieldMap.xlsx]]
 +
:: Jay's Model (with and without solenoid's steel): [[media: Radiabeam_GTS_magnetic_model_Jay_28Sept2017.pdf]]
  
 
= '''Presentations''' =
 
= '''Presentations''' =
  
* ''Magnetized Beam Update (LDRD)''
+
* ''Magnetized Electron Beam Development''
 +
R. Suleiman et al., JLEIC Collaboration Meeting, Spring 2017.
 +
: [[media:Magnetized_JLEIC_Coll_April2017_Suleiman.pdf]]
 +
: [[media:Magnetized_JLEIC_Coll_April2017_Suleiman.pptx]]
 +
 
 +
 
 +
* ''Magnetized Bunched Electron Beam from DC High Voltage Photogun''
 +
R. Suleiman et al., Physics of Photocathodes for Photoinjectors (P3) Workshop, Oct 17-19, 2016
 +
: [[media:JLab_P3_October2016_MagBeam_poster.pdf]]
 +
: [[media:JLab_P3_October2016_MagBeam_poster.pptx]]
 +
 
 +
 
 +
* ''Update on Development of High Current Bunched Electron Beam from Magnetized DC Photogun''
 
R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Fall 2016.
 
R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Fall 2016.
 
: [[media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pdf]]
 
: [[media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pdf]]
Line 80: Line 138:
  
 
= '''References''' =
 
= '''References''' =
 +
* ''Extension of Busch’s theorem to particle beams''
 +
L. Groening, C. Xiao, and M. Chung, Phys. Rev. Accel. Beams '''21''', 014201 (2018)[https://doi.org/10.1103/PhysRevAccelBeams.21.014201] [[media:PhysRevAccelBeams.21.014201.pdf]]
 +
 +
 +
* ''Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique''
 +
A. Halavanau et al., Phys. Rev. ST Accel. Beams '''20''', 103404 (2017) [http://dx.doi.org/10.1103/PhysRevAccelBeams.20.103404] [[media:PhysRevAccelBeams.20.103404.pdf]]
 +
  
 
* ''Round-to-Flat Beam Transformation and Applications''
 
* ''Round-to-Flat Beam Transformation and Applications''
Line 93: Line 158:
 
* ''Generation of angular-momentum-dominated electron beams from a photoinjector''
 
* ''Generation of angular-momentum-dominated electron beams from a photoinjector''
 
Y.-E Sun et al., Phys. Rev. ST Accel. Beams '''7''', 123501 (2004) [http://dx.doi.org/10.1103/PhysRevSTAB.7.123501] [[media:PhysRevSTAB.7.123501.pdf]]
 
Y.-E Sun et al., Phys. Rev. ST Accel. Beams '''7''', 123501 (2004) [http://dx.doi.org/10.1103/PhysRevSTAB.7.123501] [[media:PhysRevSTAB.7.123501.pdf]]
 +
 +
 +
* ''Summary of the angular-momentum-dominated beam experiment (April and May 2004)''
 +
Y.-E Sun and P. Piot: [[media:magBeam_Y.-E.Sun-AprilMay2004.pdf]]
  
  
Line 101: Line 170:
 
* ''Photoinjector generation of a flat electron beam with transverse emittance ratio of 100''
 
* ''Photoinjector generation of a flat electron beam with transverse emittance ratio of 100''
 
P. Piot et al., Phys. Rev. ST Accel. Beams '''9''', 031001 (2006) [http://dx.doi.org/10.1103/PhysRevSTAB.9.031001] [[media:PhysRevSTAB.9.031001.pdf]]
 
P. Piot et al., Phys. Rev. ST Accel. Beams '''9''', 031001 (2006) [http://dx.doi.org/10.1103/PhysRevSTAB.9.031001] [[media:PhysRevSTAB.9.031001.pdf]]
 +
 +
 +
* ''Transverse-to-longitudinal emittance exchange to improve performance of high-gain free-electron lasers''
 +
P. Emma, Z. Huang, K.-J. Kim, and P. Piot, Phys. Rev. ST Accel. Beams '''9''', 100702 (2006) [https://doi.org/10.1103/PhysRevSTAB.9.100702] [[media:PhysRevSTAB.9.100702.pdf]]
 +
 +
 +
* ''Studies in Laser Photo-cathode RF Guns''
 +
Xiangyun Chang (Stony Brook University) [[media:BNL_MagBeam_ThesisChang.pdf]]
 +
 +
 +
* ''First Observation of the Exchange of Transverse and Longitudinal Emittances''
 +
J. Ruan et al, Phys. Rev. Lett. '''106''', 244801 (2011) [https://doi.org/10.1103/PhysRevLett.106.244801] [[media:PhysRevLett.106.224801.pdf]]
  
  
Line 129: Line 210:
 
* ''Adapting Optics for High Energy Electron Cooling''  
 
* ''Adapting Optics for High Energy Electron Cooling''  
 
Ya. Derbenev, University of Michigan Report No. UM-HE-98-04, (1998) [[media:UM-HE-98-04-A.pdf]]
 
Ya. Derbenev, University of Michigan Report No. UM-HE-98-04, (1998) [[media:UM-HE-98-04-A.pdf]]
 +
 +
 +
= '''Beam Simulation''' =
 +
 +
* ''ASTRA: A Space Charge Tracking Algorithm'' [http://www.desy.de/~mpyflo/]
 +
 +
* ''GPT: General Particle Tracer'' [http://www.pulsar.nl/gpt/index.html]
 +
 +
* ''OptiM: A Program for Accelerator Optics'' [http://home.fnal.gov/~ostiguy/OptiM/]

Latest revision as of 13:16, 5 March 2018

Cathode Solenoid

  • Solenoid Drawings:
  1. media:haysg_JL0034767-LDRD_RIGHT_COIL.pdf
  2. media:haysg_JL0035043-LDRD_LEFT_COIL.pdf
  3. media:haysg_JL0034810-LDRD_SOLENOID_COIL_ASSEMBLY.pdf


  • Jay Benesch, A quick and dirty magnet design for the magnetized beam LDRD proposal (JLab Tech Note 15-043, January 17, 2016): media:LDRD_Solenoid_model.pdf


  • Jay Benesch, Opera model of magnetized beam gun magnet:
  1. Bz(0,0,z): media:LDRD_map_Bz_puck_moly.txt – no steel
  2. Bz(0,0,z): media:LDRD_map_Bz_puck_steel.txt – steel runs from z=4.8 to z=5.8 cm
  3. Bx, By, Bz(x,y,z): media:LDRD_map_BxByBz_puck_moly.txt.gz.txt (change .gz.txt to .gz) – no steel
  4. Bx, By, Bz(x,y,z): media:LDRD_map_BxByBz_puck_steel.txt.gz.txt (change .gz.txt to .gz) – steel runs from z=4.8 to z=5.8 cm
  5. root macro to plot Bz vs z: media:GunMagnet_Bz.gif (change .txt to .C) media:GunMagnet_Bz.txt


big solenoid center is at Z 27.4 cm.
first focusing solenoid center is Z 56.5 cm
second focusing solenoid center is Z 116.5 cm




  • MLDGT01 Magnetized Gun Solenoid Field Maps from Magnet Measurement Facility (Joe Meyers, August 31, 2016):


MLDGT01 on stand MMF mod.jpg


FILE MEASUREMENT COMMENTS
media:LDGT01_Centerline_Measurements_15-7-21.xlsx Bz Centerline for I=0, 100, 200, 300 and 400A Z=-96cm to +60cm; This was the limit of the length of probe holder.
media:LDGT01_Air_Measurements_15-8-23.xlsx 1.) Bz vs. I for I=0, 100, 200, 300 and 400A 2.) Bz X-scan across the puck position 3.) Bz from Z=+15cm to +21.8cm for X=-2.5cm to +2.5cm; Repeat with Y=-1cm and +1cm Used same coordinate positions for the probe as the puck measurements.
media:LDGT01_Hybrid_Puck_Measurements_16-8-19.xlsx Repeat with above with hybrid puck. The distance between hall probe sensor to face of puck was 2mm.
media:LDGT01_Steel_Puck_Measurements_16-8-22.xlsx Repeat with above with steel puck. The distance between hall probe sensor to face of puck was 2mm.


  • MCRGT Radiabeam STM-02-340-110-NUD Steerer
Radiabeam Field Map: media:RadiaBeam_Steerer_FieldMap.xlsx
Jay's Model (with and without solenoid's steel): media: Radiabeam_GTS_magnetic_model_Jay_28Sept2017.pdf

Presentations

  • Magnetized Electron Beam Development

R. Suleiman et al., JLEIC Collaboration Meeting, Spring 2017.

media:Magnetized_JLEIC_Coll_April2017_Suleiman.pdf
media:Magnetized_JLEIC_Coll_April2017_Suleiman.pptx


  • Magnetized Bunched Electron Beam from DC High Voltage Photogun

R. Suleiman et al., Physics of Photocathodes for Photoinjectors (P3) Workshop, Oct 17-19, 2016

media:JLab_P3_October2016_MagBeam_poster.pdf
media:JLab_P3_October2016_MagBeam_poster.pptx


  • Update on Development of High Current Bunched Electron Beam from Magnetized DC Photogun

R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Fall 2016.

media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pdf
media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pptx


  • Magnetized Beam Simulations (LDRD)

Fay Hannon, JLEIC Collaboration Meeting, Spring 2016.

media:JLEIC_Collab_Meeting_March2016_Fay.pdf
media:JLEIC_Collab_Meeting_March2016_Fay.pptx


  • Magnetized Beam Update (LDRD)

R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Spring 2016.

media:Magnetized_JLEIC_Coll_March2016_Suleiman.pdf
media:Magnetized_JLEIC_Coll_March2016_Suleiman.pptx


  • Generation and Characterization of Magnetized Bunched Electron Beam from a DC High Voltage Photogun

R. Suleiman et al., abstract submitted to APS April 2016 meeting [1]

media:Suleiman_APS_mtg_April_2016_Salt_Lake_City.pdf media:APS_April16_MagBeam.pdf
media:Suleiman_APS_April2016_poster.pdf
media:Suleiman_APS_April2016_poster.pptx


  • LDRD: Magnetized Source

R. Suleiman and Matt Poelker, JLEIC Nuclear Physics meeting, November 20, 2015.

media:Magnetized_JLEIC_NP_Nov2015.pdf
media:Magnetized_JLEIC_NP_Nov2015.pptx


  • Development of High Current Bunched Magnetized Electron DC Photo-gun

R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Fall 2015.

media:Magnetized_Suleiman_MEIC_Coll_Fall2015.pdf
media:Magnetized_Suleiman_MEIC_Coll_Fall2015.pptx


  • Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler

R. Suleiman and Matt Poelker, MEIC Accelerator R&D Meeting, April 16, 2015.

media:LDRD_MagBeam_talk_D_Meeting_16April2015.pdf
media:LDRD_MagBeam_talk_D_Meeting_16April2015.pptx


  • 200 mA Magnetized beam for MEIC Electron Cooler (and Backup Slides - MEIC Polarized Electron Source)

R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Spring 2015.

media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pdf
media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pptx


  • High Current Electron Source for Cooling

R. Suleiman, MEIC Accelerator Design Review, January 15, 2014.

media:Suleiman_MEIC_ElectronSource.pdf
media:Suleiman_MEIC_ElectronSource.pptx


References

  • Extension of Busch’s theorem to particle beams

L. Groening, C. Xiao, and M. Chung, Phys. Rev. Accel. Beams 21, 014201 (2018)[2] media:PhysRevAccelBeams.21.014201.pdf


  • Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique

A. Halavanau et al., Phys. Rev. ST Accel. Beams 20, 103404 (2017) [3] media:PhysRevAccelBeams.20.103404.pdf


  • Round-to-Flat Beam Transformation and Applications

Yin-E Sun, COOL15 presentation, media:Yin-E_Sun_COOL15.pdf media:Yin-E_COOL15.pptx


  • Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling

P. Piot, EIC14 Proceedings, media:Piot_EIC14.pdf

Talk Slides: media:TUAAUD3_TALK.PDF media:TUAAUD3_TALK.pptx


  • Generation of angular-momentum-dominated electron beams from a photoinjector

Y.-E Sun et al., Phys. Rev. ST Accel. Beams 7, 123501 (2004) [4] media:PhysRevSTAB.7.123501.pdf


  • Summary of the angular-momentum-dominated beam experiment (April and May 2004)

Y.-E Sun and P. Piot: media:magBeam_Y.-E.Sun-AprilMay2004.pdf


  • Angular-momentum-dominated electron beams and flat-beam generation

Yin-e Sun (Chicago U.) FERMILAB-THESIS-2005-17 media:fermilab-thesis-2005-17.PDF


  • Photoinjector generation of a flat electron beam with transverse emittance ratio of 100

P. Piot et al., Phys. Rev. ST Accel. Beams 9, 031001 (2006) [5] media:PhysRevSTAB.9.031001.pdf


  • Transverse-to-longitudinal emittance exchange to improve performance of high-gain free-electron lasers

P. Emma, Z. Huang, K.-J. Kim, and P. Piot, Phys. Rev. ST Accel. Beams 9, 100702 (2006) [6] media:PhysRevSTAB.9.100702.pdf


  • Studies in Laser Photo-cathode RF Guns

Xiangyun Chang (Stony Brook University) media:BNL_MagBeam_ThesisChang.pdf


  • First Observation of the Exchange of Transverse and Longitudinal Emittances

J. Ruan et al, Phys. Rev. Lett. 106, 244801 (2011) [7] media:PhysRevLett.106.224801.pdf


  • Simple algorithm for designing skew-quadrupole cooling configurations

B. Carlsten and K. Bishofberger, New J. Phys. 8, 286 (2006) [8] media:NewJPhys.8.286.pdf


  • Round-to-flat transformation of angular-momentum-dominated beams

Kwang-Je Kim, Phys. Rev. ST Accel. Beams 6, 104002 (2003) [9] media:PhysRevSTAB.6.104002.pdf


  • A low emittance, flat-beam electron source for linear colliders

R. Brinkmann, Y. Derbenev, and K. Flöttmann, Phys. Rev. ST Accel. Beams 4, 053501 (2001) [10] media:PhysRevSTAB.4.053501.pdf


  • Understanding the focusing of charged particle beams in a solenoid magnetic field

V. Kumar, Am. J. Phys. 77, 737 (2009) media:AJP000737.pdf


  • Optical principles of beam transport for relativistic electron cooling

A. Burov et al., Phys. Rev. ST Accel. Beams 3, 094002 (2000) [11] media:PhysRevSTAB.3.094002.pdf


  • Advanced optical concepts for electron cooling

Ya. Derbenev, Nucl. Inst. Meth. A 441 223 (2000) [12] media:NuclInstMethA.441.223.pdf


  • Adapting Optics for High Energy Electron Cooling

Ya. Derbenev, University of Michigan Report No. UM-HE-98-04, (1998) media:UM-HE-98-04-A.pdf


Beam Simulation

  • ASTRA: A Space Charge Tracking Algorithm [13]
  • GPT: General Particle Tracer [14]
  • OptiM: A Program for Accelerator Optics [15]