Difference between revisions of "Magnetized Gun References and Documents"
(16 intermediate revisions by the same user not shown) | |||
Line 19: | Line 19: | ||
− | * MLDGT01 Magnetized Gun Solenoid Field Maps from Magnet Measurement Facility (Joe Meyers): | + | * Jay Benesch, Opera model of magnetized beam gun magnet B<sub>z</sub>(0,0,z): [[media:LDRD_map_Bz_puck_moly_twoBeamLineSolenoids.txt]] |
+ | :: big solenoid center is at Z 27.4 cm. | ||
+ | :: first focusing solenoid center is Z 56.5 cm | ||
+ | :: second focusing solenoid center is Z 116.5 cm | ||
+ | |||
+ | |||
+ | |||
+ | * '''''LDRD GTS Magnetic Model''''', Jay Benesch (October 1, 2017): [[media:GTS_magnetic_model_Jay_01Oct2017.pdf]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | * MLDGT01 Magnetized Gun Solenoid Field Maps from Magnet Measurement Facility (Joe Meyers, August 31, 2016): | ||
+ | |||
+ | |||
+ | |||
+ | [[file:MLDGT01_on_stand_MMF_mod.jpg|center|300px|]] | ||
+ | |||
− | |||
{| class="wikitable" | {| class="wikitable" | ||
Line 30: | Line 46: | ||
|- | |- | ||
| [[media:LDGT01_Centerline_Measurements_15-7-21.xlsx]] | | [[media:LDGT01_Centerline_Measurements_15-7-21.xlsx]] | ||
− | | Bz Centerline | + | | Bz Centerline for I=0, 100, 200, 300 and 400A |
| Z=-96cm to +60cm; This was the limit of the length of probe holder. | | Z=-96cm to +60cm; This was the limit of the length of probe holder. | ||
|- | |- | ||
| [[media:LDGT01_Air_Measurements_15-8-23.xlsx]] | | [[media:LDGT01_Air_Measurements_15-8-23.xlsx]] | ||
− | | 1.) Bz vs. I for I=0, 100, 200, 300 and 400A 2.) Bz X-scan across the puck position 3.) Bz | + | | 1.) Bz vs. I for I=0, 100, 200, 300 and 400A 2.) Bz X-scan across the puck position 3.) Bz from Z=+15cm to +21.8cm for X=-2.5cm to +2.5cm; Repeat with Y=-1cm and +1cm |
| Used same coordinate positions for the probe as the puck measurements. | | Used same coordinate positions for the probe as the puck measurements. | ||
|- | |- | ||
Line 47: | Line 63: | ||
− | * MCRGT Radiabeam STM-02-340-110-NUD Steerer Field Map: [[media:RadiaBeam_Steerer_FieldMap.xlsx]] | + | * MCRGT Radiabeam STM-02-340-110-NUD Steerer |
+ | :: Radiabeam Field Map: [[media:RadiaBeam_Steerer_FieldMap.xlsx]] | ||
+ | :: Jay's Model (with and without solenoid's steel): [[media: Radiabeam_GTS_magnetic_model_Jay_28Sept2017.pdf]] | ||
+ | = '''Presentations''' = | ||
+ | |||
+ | * ''Magnetized Electron Beam Development'' | ||
+ | R. Suleiman et al., JLEIC Collaboration Meeting, Spring 2017. | ||
+ | : [[media:Magnetized_JLEIC_Coll_April2017_Suleiman.pdf]] | ||
+ | : [[media:Magnetized_JLEIC_Coll_April2017_Suleiman.pptx]] | ||
− | |||
* ''Magnetized Bunched Electron Beam from DC High Voltage Photogun'' | * ''Magnetized Bunched Electron Beam from DC High Voltage Photogun'' | ||
Line 115: | Line 138: | ||
= '''References''' = | = '''References''' = | ||
+ | * ''Extension of Busch’s theorem to particle beams'' | ||
+ | L. Groening, C. Xiao, and M. Chung, Phys. Rev. Accel. Beams '''21''', 014201 (2018)[https://doi.org/10.1103/PhysRevAccelBeams.21.014201] [[media:PhysRevAccelBeams.21.014201.pdf]] | ||
+ | |||
+ | |||
+ | * ''Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique'' | ||
+ | A. Halavanau et al., Phys. Rev. ST Accel. Beams '''20''', 103404 (2017) [http://dx.doi.org/10.1103/PhysRevAccelBeams.20.103404] [[media:PhysRevAccelBeams.20.103404.pdf]] | ||
+ | |||
* ''Round-to-Flat Beam Transformation and Applications'' | * ''Round-to-Flat Beam Transformation and Applications'' | ||
Line 128: | Line 158: | ||
* ''Generation of angular-momentum-dominated electron beams from a photoinjector'' | * ''Generation of angular-momentum-dominated electron beams from a photoinjector'' | ||
Y.-E Sun et al., Phys. Rev. ST Accel. Beams '''7''', 123501 (2004) [http://dx.doi.org/10.1103/PhysRevSTAB.7.123501] [[media:PhysRevSTAB.7.123501.pdf]] | Y.-E Sun et al., Phys. Rev. ST Accel. Beams '''7''', 123501 (2004) [http://dx.doi.org/10.1103/PhysRevSTAB.7.123501] [[media:PhysRevSTAB.7.123501.pdf]] | ||
+ | |||
+ | |||
+ | * ''Summary of the angular-momentum-dominated beam experiment (April and May 2004)'' | ||
+ | Y.-E Sun and P. Piot: [[media:magBeam_Y.-E.Sun-AprilMay2004.pdf]] | ||
Line 176: | Line 210: | ||
* ''Adapting Optics for High Energy Electron Cooling'' | * ''Adapting Optics for High Energy Electron Cooling'' | ||
Ya. Derbenev, University of Michigan Report No. UM-HE-98-04, (1998) [[media:UM-HE-98-04-A.pdf]] | Ya. Derbenev, University of Michigan Report No. UM-HE-98-04, (1998) [[media:UM-HE-98-04-A.pdf]] | ||
+ | |||
+ | |||
+ | = '''Beam Simulation''' = | ||
+ | |||
+ | * ''ASTRA: A Space Charge Tracking Algorithm'' [http://www.desy.de/~mpyflo/] | ||
+ | |||
+ | * ''GPT: General Particle Tracer'' [http://www.pulsar.nl/gpt/index.html] | ||
+ | |||
+ | * ''OptiM: A Program for Accelerator Optics'' [http://home.fnal.gov/~ostiguy/OptiM/] |
Latest revision as of 13:16, 5 March 2018
Cathode Solenoid
- Solenoid Drawings:
- media:haysg_JL0034767-LDRD_RIGHT_COIL.pdf
- media:haysg_JL0035043-LDRD_LEFT_COIL.pdf
- media:haysg_JL0034810-LDRD_SOLENOID_COIL_ASSEMBLY.pdf
- Jay Benesch, A quick and dirty magnet design for the magnetized beam LDRD proposal (JLab Tech Note 15-043, January 17, 2016): media:LDRD_Solenoid_model.pdf
- Jay Benesch, Opera model of magnetized beam gun magnet:
- Bz(0,0,z): media:LDRD_map_Bz_puck_moly.txt – no steel
- Bz(0,0,z): media:LDRD_map_Bz_puck_steel.txt – steel runs from z=4.8 to z=5.8 cm
- Bx, By, Bz(x,y,z): media:LDRD_map_BxByBz_puck_moly.txt.gz.txt (change .gz.txt to .gz) – no steel
- Bx, By, Bz(x,y,z): media:LDRD_map_BxByBz_puck_steel.txt.gz.txt (change .gz.txt to .gz) – steel runs from z=4.8 to z=5.8 cm
- root macro to plot Bz vs z: media:GunMagnet_Bz.gif (change .txt to .C) media:GunMagnet_Bz.txt
- Jay Benesch, Opera model of magnetized beam gun magnet Bz(0,0,z): media:LDRD_map_Bz_puck_moly_twoBeamLineSolenoids.txt
- big solenoid center is at Z 27.4 cm.
- first focusing solenoid center is Z 56.5 cm
- second focusing solenoid center is Z 116.5 cm
- LDRD GTS Magnetic Model, Jay Benesch (October 1, 2017): media:GTS_magnetic_model_Jay_01Oct2017.pdf
- MLDGT01 Magnetized Gun Solenoid Field Maps from Magnet Measurement Facility (Joe Meyers, August 31, 2016):
FILE | MEASUREMENT | COMMENTS |
media:LDGT01_Centerline_Measurements_15-7-21.xlsx | Bz Centerline for I=0, 100, 200, 300 and 400A | Z=-96cm to +60cm; This was the limit of the length of probe holder. |
media:LDGT01_Air_Measurements_15-8-23.xlsx | 1.) Bz vs. I for I=0, 100, 200, 300 and 400A 2.) Bz X-scan across the puck position 3.) Bz from Z=+15cm to +21.8cm for X=-2.5cm to +2.5cm; Repeat with Y=-1cm and +1cm | Used same coordinate positions for the probe as the puck measurements. |
media:LDGT01_Hybrid_Puck_Measurements_16-8-19.xlsx | Repeat with above with hybrid puck. | The distance between hall probe sensor to face of puck was 2mm. |
media:LDGT01_Steel_Puck_Measurements_16-8-22.xlsx | Repeat with above with steel puck. | The distance between hall probe sensor to face of puck was 2mm. |
- MCRGT Radiabeam STM-02-340-110-NUD Steerer
- Radiabeam Field Map: media:RadiaBeam_Steerer_FieldMap.xlsx
- Jay's Model (with and without solenoid's steel): media: Radiabeam_GTS_magnetic_model_Jay_28Sept2017.pdf
Presentations
- Magnetized Electron Beam Development
R. Suleiman et al., JLEIC Collaboration Meeting, Spring 2017.
- media:Magnetized_JLEIC_Coll_April2017_Suleiman.pdf
- media:Magnetized_JLEIC_Coll_April2017_Suleiman.pptx
- Magnetized Bunched Electron Beam from DC High Voltage Photogun
R. Suleiman et al., Physics of Photocathodes for Photoinjectors (P3) Workshop, Oct 17-19, 2016
- Update on Development of High Current Bunched Electron Beam from Magnetized DC Photogun
R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Fall 2016.
- media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pdf
- media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pptx
- Magnetized Beam Simulations (LDRD)
Fay Hannon, JLEIC Collaboration Meeting, Spring 2016.
- Magnetized Beam Update (LDRD)
R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Spring 2016.
- media:Magnetized_JLEIC_Coll_March2016_Suleiman.pdf
- media:Magnetized_JLEIC_Coll_March2016_Suleiman.pptx
- Generation and Characterization of Magnetized Bunched Electron Beam from a DC High Voltage Photogun
R. Suleiman et al., abstract submitted to APS April 2016 meeting [1]
- LDRD: Magnetized Source
R. Suleiman and Matt Poelker, JLEIC Nuclear Physics meeting, November 20, 2015.
- Development of High Current Bunched Magnetized Electron DC Photo-gun
R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Fall 2015.
- Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler
R. Suleiman and Matt Poelker, MEIC Accelerator R&D Meeting, April 16, 2015.
- media:LDRD_MagBeam_talk_D_Meeting_16April2015.pdf
- media:LDRD_MagBeam_talk_D_Meeting_16April2015.pptx
- 200 mA Magnetized beam for MEIC Electron Cooler (and Backup Slides - MEIC Polarized Electron Source)
R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Spring 2015.
- media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pdf
- media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pptx
- High Current Electron Source for Cooling
R. Suleiman, MEIC Accelerator Design Review, January 15, 2014.
References
- Extension of Busch’s theorem to particle beams
L. Groening, C. Xiao, and M. Chung, Phys. Rev. Accel. Beams 21, 014201 (2018)[2] media:PhysRevAccelBeams.21.014201.pdf
- Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique
A. Halavanau et al., Phys. Rev. ST Accel. Beams 20, 103404 (2017) [3] media:PhysRevAccelBeams.20.103404.pdf
- Round-to-Flat Beam Transformation and Applications
Yin-E Sun, COOL15 presentation, media:Yin-E_Sun_COOL15.pdf media:Yin-E_COOL15.pptx
- Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling
P. Piot, EIC14 Proceedings, media:Piot_EIC14.pdf
Talk Slides: media:TUAAUD3_TALK.PDF media:TUAAUD3_TALK.pptx
- Generation of angular-momentum-dominated electron beams from a photoinjector
Y.-E Sun et al., Phys. Rev. ST Accel. Beams 7, 123501 (2004) [4] media:PhysRevSTAB.7.123501.pdf
- Summary of the angular-momentum-dominated beam experiment (April and May 2004)
Y.-E Sun and P. Piot: media:magBeam_Y.-E.Sun-AprilMay2004.pdf
- Angular-momentum-dominated electron beams and flat-beam generation
Yin-e Sun (Chicago U.) FERMILAB-THESIS-2005-17 media:fermilab-thesis-2005-17.PDF
- Photoinjector generation of a flat electron beam with transverse emittance ratio of 100
P. Piot et al., Phys. Rev. ST Accel. Beams 9, 031001 (2006) [5] media:PhysRevSTAB.9.031001.pdf
- Transverse-to-longitudinal emittance exchange to improve performance of high-gain free-electron lasers
P. Emma, Z. Huang, K.-J. Kim, and P. Piot, Phys. Rev. ST Accel. Beams 9, 100702 (2006) [6] media:PhysRevSTAB.9.100702.pdf
- Studies in Laser Photo-cathode RF Guns
Xiangyun Chang (Stony Brook University) media:BNL_MagBeam_ThesisChang.pdf
- First Observation of the Exchange of Transverse and Longitudinal Emittances
J. Ruan et al, Phys. Rev. Lett. 106, 244801 (2011) [7] media:PhysRevLett.106.224801.pdf
- Simple algorithm for designing skew-quadrupole cooling configurations
B. Carlsten and K. Bishofberger, New J. Phys. 8, 286 (2006) [8] media:NewJPhys.8.286.pdf
- Round-to-flat transformation of angular-momentum-dominated beams
Kwang-Je Kim, Phys. Rev. ST Accel. Beams 6, 104002 (2003) [9] media:PhysRevSTAB.6.104002.pdf
- A low emittance, flat-beam electron source for linear colliders
R. Brinkmann, Y. Derbenev, and K. Flöttmann, Phys. Rev. ST Accel. Beams 4, 053501 (2001) [10] media:PhysRevSTAB.4.053501.pdf
- Understanding the focusing of charged particle beams in a solenoid magnetic field
V. Kumar, Am. J. Phys. 77, 737 (2009) media:AJP000737.pdf
- Optical principles of beam transport for relativistic electron cooling
A. Burov et al., Phys. Rev. ST Accel. Beams 3, 094002 (2000) [11] media:PhysRevSTAB.3.094002.pdf
- Advanced optical concepts for electron cooling
Ya. Derbenev, Nucl. Inst. Meth. A 441 223 (2000) [12] media:NuclInstMethA.441.223.pdf
- Adapting Optics for High Energy Electron Cooling
Ya. Derbenev, University of Michigan Report No. UM-HE-98-04, (1998) media:UM-HE-98-04-A.pdf
Beam Simulation
- ASTRA: A Space Charge Tracking Algorithm [13]
- GPT: General Particle Tracer [14]
- OptiM: A Program for Accelerator Optics [15]