Magnetized Gun References and Documents
Cathode Solenoid
- Solenoid Drawings:
- media:haysg_JL0034767-LDRD_RIGHT_COIL.pdf
- media:haysg_JL0035043-LDRD_LEFT_COIL.pdf
- media:haysg_JL0034810-LDRD_SOLENOID_COIL_ASSEMBLY.pdf
- Jay Benesch, A quick and dirty magnet design for the magnetized beam LDRD proposal (JLab Tech Note 15-043, January 17, 2016): media:LDRD_Solenoid_model.pdf
- Jay Benesch, Opera model of magnetized beam gun magnet:
- Bz(0,0,z): media:LDRD_map_Bz_puck_moly.txt – no steel
- Bz(0,0,z): media:LDRD_map_Bz_puck_steel.txt – steel runs from z=4.8 to z=5.8 cm
- Bx, By, Bz(x,y,z): media:LDRD_map_BxByBz_puck_moly.txt.gz.txt (change .gz.txt to .gz) – no steel
- Bx, By, Bz(x,y,z): media:LDRD_map_BxByBz_puck_steel.txt.gz.txt (change .gz.txt to .gz) – steel runs from z=4.8 to z=5.8 cm
- root macro to plot Bz vs z: media:GunMagnet_Bz.gif (change .txt to .C) media:GunMagnet_Bz.txt
- MLDGT01 Magnetized Gun Solenoid Field Maps from Magnet Measurement Facility (Joe Meyers, August 31, 2016):
FILE | MEASUREMENT | COMMENTS |
media:LDGT01_Centerline_Measurements_15-7-21.xlsx | Bz Centerline for I=0, 100, 200, 300 and 400A | Z=-96cm to +60cm; This was the limit of the length of probe holder. |
media:LDGT01_Air_Measurements_15-8-23.xlsx | 1.) Bz vs. I for I=0, 100, 200, 300 and 400A 2.) Bz X-scan across the puck position 3.) Bz from Z=+15cm to +21.8cm for X=-2.5cm to +2.5cm; Repeat with Y=-1cm and +1cm | Used same coordinate positions for the probe as the puck measurements. |
media:LDGT01_Hybrid_Puck_Measurements_16-8-19.xlsx | Repeat with above with hybrid puck. | The distance between hall probe sensor to face of puck was 2mm. |
media:LDGT01_Steel_Puck_Measurements_16-8-22.xlsx | Repeat with above with steel puck. | The distance between hall probe sensor to face of puck was 2mm. |
- MCRGT Radiabeam STM-02-340-110-NUD Steerer Field Map: media:RadiaBeam_Steerer_FieldMap.xlsx
Presentations
- Magnetized Electron Beam Development
R. Suleiman et al., JLEIC Collaboration Meeting, Spring 2017.
- media:Magnetized_JLEIC_Coll_April2017_Suleiman.pdf
- media:Magnetized_JLEIC_Coll_April2017_Suleiman.pptx
- Magnetized Bunched Electron Beam from DC High Voltage Photogun
R. Suleiman et al., Physics of Photocathodes for Photoinjectors (P3) Workshop, Oct 17-19, 2016
- Update on Development of High Current Bunched Electron Beam from Magnetized DC Photogun
R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Fall 2016.
- media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pdf
- media:Magnetized_JLEIC_Coll_Oct_2016_Suleiman.pptx
- Magnetized Beam Simulations (LDRD)
Fay Hannon, JLEIC Collaboration Meeting, Spring 2016.
- Magnetized Beam Update (LDRD)
R. Suleiman and Matt Poelker, JLEIC Collaboration Meeting, Spring 2016.
- media:Magnetized_JLEIC_Coll_March2016_Suleiman.pdf
- media:Magnetized_JLEIC_Coll_March2016_Suleiman.pptx
- Generation and Characterization of Magnetized Bunched Electron Beam from a DC High Voltage Photogun
R. Suleiman et al., abstract submitted to APS April 2016 meeting [1]
- LDRD: Magnetized Source
R. Suleiman and Matt Poelker, JLEIC Nuclear Physics meeting, November 20, 2015.
- Development of High Current Bunched Magnetized Electron DC Photo-gun
R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Fall 2015.
- Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler
R. Suleiman and Matt Poelker, MEIC Accelerator R&D Meeting, April 16, 2015.
- media:LDRD_MagBeam_talk_D_Meeting_16April2015.pdf
- media:LDRD_MagBeam_talk_D_Meeting_16April2015.pptx
- 200 mA Magnetized beam for MEIC Electron Cooler (and Backup Slides - MEIC Polarized Electron Source)
R. Suleiman and Matt Poelker, MEIC Collaboration Meeting, Spring 2015.
- media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pdf
- media:MEIC_Coll_Spring2015_Magnetized_Gun_Suleiman.pptx
- High Current Electron Source for Cooling
R. Suleiman, MEIC Accelerator Design Review, January 15, 2014.
References
- Round-to-Flat Beam Transformation and Applications
Yin-E Sun, COOL15 presentation, media:Yin-E_Sun_COOL15.pdf media:Yin-E_COOL15.pptx
- Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling
P. Piot, EIC14 Proceedings, media:Piot_EIC14.pdf
Talk Slides: media:TUAAUD3_TALK.PDF media:TUAAUD3_TALK.pptx
- Generation of angular-momentum-dominated electron beams from a photoinjector
Y.-E Sun et al., Phys. Rev. ST Accel. Beams 7, 123501 (2004) [2] media:PhysRevSTAB.7.123501.pdf
- Summary of the angular-momentum-dominated beam experiment (April and May 2004)
Y.-E Sun and P. Piot: media:magBeam_Y.-E.Sun-AprilMay2004.pdf
- Angular-momentum-dominated electron beams and flat-beam generation
Yin-e Sun (Chicago U.) FERMILAB-THESIS-2005-17 media:fermilab-thesis-2005-17.PDF
- Photoinjector generation of a flat electron beam with transverse emittance ratio of 100
P. Piot et al., Phys. Rev. ST Accel. Beams 9, 031001 (2006) [3] media:PhysRevSTAB.9.031001.pdf
- Transverse-to-longitudinal emittance exchange to improve performance of high-gain free-electron lasers
P. Emma, Z. Huang, K.-J. Kim, and P. Piot, Phys. Rev. ST Accel. Beams 9, 100702 (2006) [4] media:PhysRevSTAB.9.100702.pdf
- Studies in Laser Photo-cathode RF Guns
Xiangyun Chang (Stony Brook University) media:BNL_MagBeam_ThesisChang.pdf
- First Observation of the Exchange of Transverse and Longitudinal Emittances
J. Ruan et al, Phys. Rev. Lett. 106, 244801 (2011) [5] media:PhysRevLett.106.224801.pdf
- Simple algorithm for designing skew-quadrupole cooling configurations
B. Carlsten and K. Bishofberger, New J. Phys. 8, 286 (2006) [6] media:NewJPhys.8.286.pdf
- Round-to-flat transformation of angular-momentum-dominated beams
Kwang-Je Kim, Phys. Rev. ST Accel. Beams 6, 104002 (2003) [7] media:PhysRevSTAB.6.104002.pdf
- A low emittance, flat-beam electron source for linear colliders
R. Brinkmann, Y. Derbenev, and K. Flöttmann, Phys. Rev. ST Accel. Beams 4, 053501 (2001) [8] media:PhysRevSTAB.4.053501.pdf
- Understanding the focusing of charged particle beams in a solenoid magnetic field
V. Kumar, Am. J. Phys. 77, 737 (2009) media:AJP000737.pdf
- Optical principles of beam transport for relativistic electron cooling
A. Burov et al., Phys. Rev. ST Accel. Beams 3, 094002 (2000) [9] media:PhysRevSTAB.3.094002.pdf
- Advanced optical concepts for electron cooling
Ya. Derbenev, Nucl. Inst. Meth. A 441 223 (2000) [10] media:NuclInstMethA.441.223.pdf
- Adapting Optics for High Energy Electron Cooling
Ya. Derbenev, University of Michigan Report No. UM-HE-98-04, (1998) media:UM-HE-98-04-A.pdf
Beam Simulation
- ASTRA: A Space Charge Tracking Algorithm [11]